Numerical solution of time fractional nonlinear Schrödinger equation arising in quantum mechanics by cubic B-spline finite elements
Downloads
DOI:
https://doi.org/10.26637/mjm304/003Abstract
In the present article, we are going to investigate the numerical solutions of time fractional nonlinear Schrödinger equation which is frequently encountered in quantum mechanics by using cubic B-spline collocation method. To be able to control the efficiency of the proposed method, some sample problems have been studied in this article. The outstanding purpose of the paper is to indicate that the finite element method based on the cubic B-spline collocation method approach can also be suitable for the handling of the fractional differential equations. At the end, the results of numerical experiments are compared with those of analytical solution to ensure the accuracy and efficiency of the presented scheme.
Keywords:
Finite element method, collocation method, time fractional nonlinear Schrödinger equation, cubic B-Spline, fractional quantum mechanicsMathematics Subject Classification:
97N40, 65N30, 65D07, 74S05- Pages: 387-397
- Date Published: 01-10-2015
- Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)
S. Momami and Z. Odibat, Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Phys. Lett. A, 355 (2006) 271-279. DOI: https://doi.org/10.1016/j.physleta.2006.02.048
K. B. Oldham, J. Spanier, The Fractional Calculus, Academic, New York, 1974.
A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
R. Metzler, J. Klafter,The restaurant at the end of the random walk:recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, 37 (2004) 161-208. DOI: https://doi.org/10.1088/0305-4470/37/31/R01
A. Esen, Y. Ucar, N. Yagmurlu, O Tasbozan, A Galerkin Finite Element Method to Solve Fractional Diffusion and Fractional Diffusion-Wave Equations, Math. Model. Anal. 18 (2013) 260-273. DOI: https://doi.org/10.3846/13926292.2013.783884
O. Tasbozan, A. Esen, N.M. Yagmurlu, Y. Ucar, A Numerical Solution to Fractional Diffusion Equation for Force-Free Case, Abstr. Appl. Anal. (2013), http:/ / dx.doi.org/10.1155/2013/187383, Article ID 187383, 6 pp. DOI: https://doi.org/10.1155/2013/187383
N.H. Sweilam, M.M. Khader, A.M.S. Mahdy, Crank-Nicolson Finite Difference Method For Solving TimeFractional Diffusion Equation, J. Fract. Calc. and Appl. 2 (2012) 1-9.
A. Mohebbi, M. Abbaszadeh, M. Dehghan, The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrdinger equation arising in quantum mechanics, Eng. Anal. Bound. Elem. 37 (2013) 475-485. DOI: https://doi.org/10.1016/j.enganabound.2012.12.002
L. Wei, H. Dai, D. Zhang, Z. Si, Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation, Calcolo 51 (2014) 175-192. DOI: https://doi.org/10.1007/s10092-013-0084-6
V. R. Hosseini, W. Chen, Z. Avazzadeh, Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Bound. Elem. 38 (2014) 31-39. DOI: https://doi.org/10.1016/j.enganabound.2013.10.009
S.B. Bhalekar, Stability analysis of a class of fractional delay differential equations, Pramana-J. Phys. 81 (2013) 215-224. DOI: https://doi.org/10.1007/s12043-013-0569-5
W. Liu, K. Chen, The functional variable method for finding exact solutions of some nonlinear timefractional differential equations, Pramana-J. Phys. 81 (2013) 377-384. DOI: https://doi.org/10.1007/s12043-013-0583-7
S.B. Yuste, Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys. $216(2006)$ 264-274. DOI: https://doi.org/10.1016/j.jcp.2005.12.006
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
D.L. Logan, A First Course in the Finite Element Method (Fourth Edition), Thomson, 2007.
M. Dehghan, A. Taleei, A compact split-step finite difference method for solving the nonlinear Schrodinger equations with constant and variable coefficients, Comput. Phys. Commun. 181 (2010) 43-51. DOI: https://doi.org/10.1016/j.cpc.2009.08.015
A. Mohebbi, M. Dehghan, The use of compact boundary value method for the solution of twodimensional Schrodinger equation, J. Comput. Appl. Math. 225 (2009) 124-134. DOI: https://doi.org/10.1016/j.cam.2008.07.008
P. Rozmej, B. Bandrowski, On fractional Schrodinger equation, Comput. Methods. Sci. Tech. 16 (2010) 191-194. DOI: https://doi.org/10.12921/cmst.2010.16.02.191-194
N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000) $298-304$. DOI: https://doi.org/10.1016/S0375-9601(00)00201-2
N. Laskin, Fractional Schrodinger equation, Phys. Rev. E 66 (2002) 056108. DOI: https://doi.org/10.1103/PhysRevE.66.056108
L. Wei, Y. He, X. Zhang, S. Wang, Analysis of an implicit fully discrete local discontinuous Galerkin methods fort he time-fractional Schrndinger equation, Finite Elem. Anal. Des. 59 (2012) 28-34. DOI: https://doi.org/10.1016/j.finel.2012.03.008
S. Z. Rida, H. M. El-Sherbiny, A.A.M. Arafa, On the solution of the fractional nonlinear Schrdinger equation, Phys. Lett. A 372 (2008) 553-558. DOI: https://doi.org/10.1016/j.physleta.2007.06.071
M. Naber, Time fractional Schrodinger equation, J. Math. Phys. 45 (2004) 3339-3352. DOI: https://doi.org/10.1063/1.1769611
F. B. Adda, J. Cresson, Fractional differential equations and the Schrodinger equation, Appl. Math. Comput. 161 (2005) 323-345. DOI: https://doi.org/10.1016/j.amc.2003.12.031
P. M. Prenter, Splines and Variasyonel Methods, New York, John Wiley, 1975.
- NA
Similar Articles
- Leila Ben Aoua, Abdelkrim Aliouche, Common fixed point theorems in intuitionistic menger spaces using CLR property , Malaya Journal of Matematik: Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.