Periodic boundary value problems for singular fractional differential equations with impulse effects

Downloads

DOI:

https://doi.org/10.26637/mjm304/006

Abstract

Firstly by using iterative method, we prove existence and uniqueness of solutions of Cauchy problems of differential equations involving Caputo fractional derivative, Riemann-Liouville and Hadamard fractional derivatives with order \(q \in(0,1)\). Then we obtain exact expression of solutions of impulsive fractional differential equations, i.e., exact expression of piecewise continuous solutions. Finally, four classes of integral type periodic boundary value problems of singular fractional differential equations with impulse effects are proposed. Sufficient conditions are given for the existence of solutions of these problems. We allow the nonlinearity \(p(t) f(t, x)\) in fractional differential equations to be singular at \(t=0,1\) and be involved a superlinear and sub-linear term. The analysis relies on Schaefer's fixed point theorem.

Keywords:

singular fractional differential system, impulsive boundary value problem, Riemann-Liouville fractional derivative, Caputo fractional derivative, Hadanard fractional derivative, Caputo type Hadamard fractional derivative, fixed point theorem

Mathematics Subject Classification:

92D25, 34A37, 34K15
  • Yuji Liu Department of Mathematics and Statistics, Guangdong University of Finance and Economics, Guangzhou-510320, P R China.
  • Shimin Li Department of Mathematics and Statistics, Guangdong University of Finance and Economics, Guangzhou-510320, P R China.
  • Pages: 423-490
  • Date Published: 01-10-2015
  • Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)

A. Arara, M. Benchohra, N. Hamidi, J. J. Nieto, Fractional order differential equations on an unbounded domain, Nonlinear Anal., 72 (2010), 580-586.

R.P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973-1033. DOI: https://doi.org/10.1007/s10440-008-9356-6

Bashir Ahmad, Sotiris K. Ntouyas, A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations, Frac. Calcu. Appl. Anal., 17(2) (2014), 348-360. DOI: https://doi.org/10.2478/s13540-014-0173-5

B. Ahmad and S.K. Ntouyas, On Hadamard fractional integro-differential boundary value problems, J. Appl. Math. Comput., (2014),

B. Ahmad and S.K. Ntouyas, On three-point Hadamard-type fractional boundary value problems, Int. Electron. J. Pure Appl. Math., 8 (4) (2014), 31-42. DOI: https://doi.org/10.1186/1029-242X-2014-454

B. Ahmad, S.K. Ntouyas, A. Alsaedi, New results for boundary value problems of Hadamard-type fractional di?erential inclusions and integral boundary conditions, Bound. Value Probl., 2013 (2013), 275. DOI: https://doi.org/10.1186/1687-2770-2013-275

B. Ahmad, S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Anal. Hybrid Syst., 3 (2009), 251-258.

A. Arara, M. Benchohra, N. Hamidi, and J. Nieto, Fractional order differential equations on an unbounded domain, Nonlinear Anal., 72 (2010), 580-586. DOI: https://doi.org/10.1016/j.na.2009.06.106

B. Ahmad, S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Anal. Hybrid Syst., 3 (2009), 251-258. DOI: https://doi.org/10.1016/j.nahs.2009.01.008

B. Ahmad, J. J. Nieto, Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory, Topological Methods Nonl. Anal., 35 (2010), 295-304.

B. Ahmad, J. J. Nieto, Existence of solutions for impulsive anti-periodic boundary value problems of fractional order, Taiwanese J. Math., 15(3) (2011), 981-993. DOI: https://doi.org/10.11650/twjm/1500406279

P. L. Butzer, A. A. Kilbas, and J. J. Trujillo. Compositions of hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387C400. DOI: https://doi.org/10.1016/S0022-247X(02)00049-5

K. Balachandran, S. Kiruthika, Existence of solutions of abstract fractional impulsive semilinear evolution equations, Electron. J. Qual. Theory Differ. Equ., 4 (2010), 1-12. DOI: https://doi.org/10.14232/ejqtde.2010.1.4

P. L. Butzer, A. A. Kilbas, and J. J. Trujillo. Fractional calculus in the mellin setting and hadamard-type fractional integrals, J. Math. Anal. Appl., 269 (2002), 1-27. DOI: https://doi.org/10.1016/S0022-247X(02)00001-X

P. L. Butzer, A. A. Kilbas, and J. J. Trujillo. Mellin transform analysis and integration by parts for hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1-15. DOI: https://doi.org/10.1016/S0022-247X(02)00066-5

M. Belmekki, Juan J. Nieto, Rosana Rodriguez-Lopez, Existence of periodic solution for a nonlinear fractional differential equation, Bound. Value Prob., 2009 (2009), Article ID 324561, doi:10.1155/2009/324561. DOI: https://doi.org/10.1155/2009/324561

M. Belmekki, J. J. Nieto, R. Rodriguez-Lopez, Existence of solution to a periodic boundary value problem for a nonlinear impulsive fractional differential equation, Electron. J. Qual. Theo. Differ. Equ., 16 (2014), $1-27$ DOI: https://doi.org/10.14232/ejqtde.2014.1.16

M. Benchohra, J. Graef, S. Hamani, Existence results for boundary value problems with nonlinear frational differential equations, Appl. Anal., 87 (2008), 851-863. DOI: https://doi.org/10.1080/00036810802307579

M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theo. Differ. Equ., (8) (2009), 1-14 (Special Edition I). DOI: https://doi.org/10.14232/ejqtde.2009.4.8

R. P. Agarwal, M. Benchohra, B. A. Slimani, Existence results for differential equations with fractional order and impulses, Mem. Differ. Equ. Math. Phys., 44 (2008), 1-21. DOI: https://doi.org/10.1134/S0012266108010011

D. D. Bainov and P. S. Simeonov, Systems with Impulsive Effects, Horwood, Chichister, UK, 1989.

D. D. Bainov and P. S. Simeonov, Impulsive DiffErential Equations: Periodic Solutions and ItsApplications, Longman Scientific and Technical Group, Harlow, UK, 1993.

D. Bainov and V. Covachev, Impulsive Differential Equations with a Small Parameter, vol. 24 of Series on Advances in Mathematics for Applied Sciences, World Scientific, River Edge, NJ, USA, 1994. DOI: https://doi.org/10.1142/2058

M. Benchohra, J. Henderson, and S. K. Ntonyas, Impulsive Differential Equations and Inclusions, vol. 2, Hindawi Publishing Corporation, New York, NY, USA, 2006. DOI: https://doi.org/10.1155/9789775945501

M. Benchohra, B. A. Slimani, Impulsive fractional differential equations, Electron. J. Differ. Equ., 10(2009), 1-11. DOI: https://doi.org/10.14232/ejqtde.2010.1.54

K. Diethelm, The analysis of fractional differential equations, Lecture notes in mathematics, edited by J. M. M. Cachan etc., Springer-Verlag Berlin Heidelberg 2010. DOI: https://doi.org/10.1007/978-3-642-14574-2_8

R. Dehghant and K. Ghanbari, Triple positive solutions for boundary value problem of a nonlinear fractional differential equation, Bulletin of the Iranian Math. Soc., 33 (2007), 1-14.

D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204(2) (1996), 609-625. DOI: https://doi.org/10.1006/jmaa.1996.0456

J. Dabas, A. Chauhan, and M. Kumar, Existence of the Mild Solutions for Impulsive Fractional Equations with Infinite Delay, Intern. J. Differ. Equ., 2011 (2011), Article ID 793023, 20 pages. DOI: https://doi.org/10.1155/2011/793023

H. Ergoren, A. Kilicman, Some Existence Results for Impulsive Nonlinear Fractional Differential Equations with Closed Boundary Conditions, Abst. Appl. Anal., 2012 (2012), Article ID 387629, 15 pages. DOI: https://doi.org/10.1155/2012/387629

M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 3050-3060. DOI: https://doi.org/10.1016/j.cnsns.2011.11.017

M. Feckan, Y. Zhou, J.R. Wang, Response to "Comments on the concept of existence of solution for impulsive fractional differential equations [Commun Nonlinear Sci Numer Simul 2014;19:401-3.]", Commun. Nonlinear Sci. Numer. Simul., 19 (12) (2014), 4213-4215. DOI: https://doi.org/10.1016/j.cnsns.2014.04.014

T. Guo, W. Jiang, Impulsive problems for fractional differential equations with boundary value conditions, Comput. Math. Appl., 64 (2012), 3281-3291. DOI: https://doi.org/10.1016/j.camwa.2012.02.006

Z. Gao, Y. Liu, G. Liu, Existence and Uniqueness of Solutions to Impulsive Fractional Integro-Differential Equations with Nonlocal Conditions, Appl. Math., 4 (2013), 859-863. DOI: https://doi.org/10.4236/am.2013.46118

J. Hadamard, Essai sur létude des fonctions donnes par leur développement de Taylor, Journal de Mathématiques Pures et Appliquées 4e Série, 8 (1892), 101-186.

L.A-M. Hannaa, Yu.F. Luchko, Operational calculus for the Caputo-type fractional ErdélyiCKober derivative and its applications, Integral Transforms and Special Functions, 25(5) (2014), 359-373. DOI: https://doi.org/10.1080/10652469.2013.856901

Z. Hu, W. Liu, Solvability of a Coupled System of Fractional Differential Equations with Periodic Boundary Conditions at Resonance, Ukrainian Math. J., 65 (2014), 1619-1633. DOI: https://doi.org/10.1007/s11253-014-0884-0

F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 142 (2012), 13 pages. DOI: https://doi.org/10.1186/1687-1847-2012-142

E. Kaufmann, E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theo. Differ. Equ., 3 (2008), 1-11. DOI: https://doi.org/10.14232/ejqtde.2008.1.3

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Frational Differential Equations, Elsevier Science B. V. Amsterdam, 2006.

Y. Liu, Positive solutions for singular FDES, U.P. B. Sci. Series A, 73 (2011), 89-100.

Y. Liu, Solvability of multi-point boundary value problems for multiple term Riemann-Liouville fractional differential equations. Comput. Math. Appl., 64(4) (2012), 413-431. DOI: https://doi.org/10.1016/j.camwa.2011.12.004

Y. Liu, B. Ahmad, A Study of Impulsive Multiterm Fractional Differential Equations with Single and Multiple Base Points and Applications, łThe Scientific World Journal, 2014 (2014), Article ID 194346, 28 pages. DOI: https://doi.org/10.1155/2014/194346

Y. Luchko, Juan J. Trujillo, Caputo-type modification of the Erdélyi-Kober fractional derivative, Frac. Calcu. Appl. Anal., 10(3) (2007), 249-267.

Z. Liu, X. Li, Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations, Commun. Nonl. Sci. Numer. Simul., 18 (6) (2013), 1362-1373. DOI: https://doi.org/10.1016/j.cnsns.2012.10.010

Z. Liu, L. Lu, I. Szanto, Existence of solutions for fractional impulsive differential equations with pLaplacian operator, Acta Math. Hungarica, 141(3) (2013), 203-219. DOI: https://doi.org/10.1007/s10474-013-0305-0

C. Lizama, V. Poblite, Periodic solutions of fractional differential equations with delays, J. Evol. Equs., 11(2011), $57-70$. DOI: https://doi.org/10.1007/s00028-010-0081-z

C. Lizama, F. Poblite, Regularity of mild solutions of fractional order differential equations, Appl. Math. Comput., 224 (2013), 803-816. DOI: https://doi.org/10.1016/j.amc.2013.09.009

V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6 of Series in Modern Applied Mathematics, World Scientific, Teaneck, NJ, USA, 1989. DOI: https://doi.org/10.1142/0906

V. Lakshmikantham and A. S. Vatsala, Theory of fractional differential inequalities and applications, Commun. Appl. Anal., 11(3-4) (2007), 395-402.

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. TMA, 69(8) (2008), 2677-2682. DOI: https://doi.org/10.1016/j.na.2007.08.042

V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Letters, 21(8) (2008), 828-834. DOI: https://doi.org/10.1016/j.aml.2007.09.006

V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal. TMA, 69(10) (2008), 3337-3343. DOI: https://doi.org/10.1016/j.na.2007.09.025

M. J. Mardanov, N. I. Mahmudov, Y. A. Sharifov, Existence and uniqueness theorems for impulsive fractional differential equations with the two-point and integral boundary conditions, łThe Scientific World Journal, 2014 (2014), Article ID 918730, 8 pages. DOI: https://doi.org/10.1155/2014/918730

V. D. Milman and A. D. Myskis, On the stability of motion in the presence of impulses, Siberial Math. J., 1 $(1960), 233-237$

J. Mawhin, Topological degree methods in nonlinear boundary value problems, in: NSFCBMS Regional Conference Series in Math., American Math. Soc. Providence, RI, 1979. DOI: https://doi.org/10.1090/cbms/040

K. S. Miller, S. G. Samko, Completely monotonic functions, Integr. Transf. Spec. Funct., 12(2001), $389-402$. DOI: https://doi.org/10.1080/10652460108819360

G. M. Mophou, Existence and uniqueness of mild solutions to impulsive fractional differential equations, Nonlinear Anal., 72 (2010), 1604-1615. DOI: https://doi.org/10.1016/j.na.2009.08.046

A. M. Nakhushev, The Sturm-Liouville Problem for a Second Order Ordinary Differential equations with fractional derivatives in the lower terms, Dokl. Akad. Nauk SSSR, 234 (1977)308-311.

J. J. Nieto, Maximum principles for fractional differential equations derived from Mittag-Leffler functions, Appl. Math. Letters, 23 (2010), 1248-1251. DOI: https://doi.org/10.1016/j.aml.2010.06.007

J. J. Nieto, Comparison results for periodic boundary value problems of fractional differential equations, Frac. Differ. Equ., 1 (2011), 99-104. DOI: https://doi.org/10.7153/fdc-01-05

I. Podlubny, Frational Differential Equations, Mathematics in Science and Engineering, Academic Press, San Diego, USA, 1999.

S. Z. Rida, H.M. El-Sherbiny, and A. Arafa, On the solution of the fractional nonlinear Schrodinger equation, Phys. Letters A, 372 (2008), 553-558. DOI: https://doi.org/10.1016/j.physleta.2007.06.071

M. Rehman, R. Khan, A note on boundaryvalueproblems for a coupled system of fractional differential equations, Comput. Math. Appl., 61 (2011), 2630-2637. DOI: https://doi.org/10.1016/j.camwa.2011.03.009

S. G. Samko, A. A. Kilbas, and O. I. Marichev. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon, 1993.

A. M. Samoilenko and N. A. Perestyuk, Differential Equations With Impulses, Viska Scola, Kiev, Ukraine, 1987.

Y. Tian, Z. Bai, Existence results for the three-point impulsive boundary value problem involving fractional differential equations, Comput. Math. Appl., 59 (2010), 2601-2609. DOI: https://doi.org/10.1016/j.camwa.2010.01.028

X. Wang, C. Bai, Periodic boundary value problems for nonlinear impulsive fractional differential equations, Electron. J. Qual. Theo. Differ. Equ., 3 (2011), 1-15. DOI: https://doi.org/10.14232/ejqtde.2011.1.3

Z. Wei, W. Dong, J. Che, Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative, Nonlinear Anal. TMA, 73 (2010), 3232-3238. DOI: https://doi.org/10.1016/j.na.2010.07.003

Z. Wei, W. Dong, Periodic boundary value problems for Riemann-Liouville fractional differential equations, Electron. J. Qual. Theo. Differ. Equ., 87 (2011), 1-13. DOI: https://doi.org/10.14232/ejqtde.2011.1.87

X. Wang, H. Chen, Nonlocal Boundary Value Problem for Impulsive Differential Equations of Fractional Order, Adv. Differ. Equ., 2011 (2011), ID404917. DOI: https://doi.org/10.1186/1687-1847-2011-2

G. Wang, B. Ahmad, L. Zhang, Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Anal., 74 (2011), 792-804. DOI: https://doi.org/10.1016/j.na.2010.09.030

G. Wang, S. Liu, R. P. Agawarl, L. Zhang, Positive solutions on integral boundary value problem involving Riemann-Liouville fractional derivative, Frac. Calc. Appl., 4(2) (2013), 312-321.

G. Wang, B. Ahmad, L. Zhang, J.J. Nieto, Comments on the concept of existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 19 (12) (2014), 401-403. DOI: https://doi.org/10.1016/j.cnsns.2013.04.003

J. Wang, X. Li, W. Wei, On the natural solution of an impulsive fractional differential equation of order $q in(1,2)$, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4384-4394. DOI: https://doi.org/10.1016/j.cnsns.2012.03.011

J. Wang, H. Xiang, Z. Liu, Positive Solution to Nonzero Boundary Values Problem for a Coupled System of Nonlinear Fractional Differential Equations, Internat. J. Differ. Equ., 2010 (2010), Article ID 186928, 12 pages, doi:10.1155/2010/186928. DOI: https://doi.org/10.1155/2010/186928

J. Wang, Y. Zhou, M. Feckan, On recent developments in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl., 64 (2012), 3008-3020. DOI: https://doi.org/10.1016/j.camwa.2011.12.064

J. Wang, Y. Zhou, On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives, Appl. Math. Letters, 39 (2015), 85-90. DOI: https://doi.org/10.1016/j.aml.2014.08.015

W. Yang, Positive solutions for singular coupled integral boundary value problems of nonlinear Hadamard fractional differential equations, J. Nonlinear Sci. Appl., 8 (2015), 110-129. DOI: https://doi.org/10.22436/jnsa.008.02.04

A. Yang, W. Ge, Positive solutions for boundary value problems of N-dimension nonlinear fractional differential systems, Bound. Value Prob., 2008, article ID 437453, doi: 10.1155/2008/437453. DOI: https://doi.org/10.1155/2008/437453

H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 238 (2007), 1075-1081. DOI: https://doi.org/10.1016/j.jmaa.2006.05.061

X. Yang, Y. Liu, Picard iterative processes for initial value problems of singular fractional differential equations, Adv. Differ. Equ. 102 (2014), pages 12. DOI: https://doi.org/10.1186/1687-1847-2014-102

S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl.252 (2000), 804–812. DOI: https://doi.org/10.1006/jmaa.2000.7123

S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equation, Electron. J. Diff. Eqns., 36 (2006), 1-12. DOI: https://doi.org/10.1155/2011/297026

X. Zhao, W. Ge, Some results for fractional impulsive boundary value problems on infinite intervals, Appl. Math., 56(4) (2011), 371-387. DOI: https://doi.org/10.1007/s10492-011-0021-4

X. Zhang, X. Huang, Z. Liu, The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay, Nonlinear Anal. Hybrid Syst., 4 (2010), 775-781. DOI: https://doi.org/10.1016/j.nahs.2010.05.007

Y. Zhao, S. Sun, Z. Han, M. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations, Appl. Math. Comput., 217 (2011), 6950-6958. DOI: https://doi.org/10.1016/j.amc.2011.01.103

X. Zhang, X. Zhang, M. Zhang, On the concept of general solution for impulsive differential equations of fractional order $q in(0,1)$, Appl. Math. Comput., 247 (2014), 72-89. DOI: https://doi.org/10.1016/j.amc.2014.08.069

  • The research was supported by the National Natural Science Foundation of China (No: 11401111), the Natural Science Foundation of Guangdong province (No:S2011010001900), the Natural Science Foundation of institution of higher education of Guangdong province (No:2014KTSCX126) and the Foundation for High- level talents in Guangdong Higher Education Project.

Metrics

Metrics Loading ...

Published

01-10-2015

How to Cite

Yuji Liu, and Shimin Li. “Periodic Boundary Value Problems for Singular Fractional Differential Equations With Impulse Effects”. Malaya Journal of Matematik, vol. 3, no. 04, Oct. 2015, pp. 423-90, doi:10.26637/mjm304/006.