Some results for the Jacobi-Dunkl transform in the space \(L^2\left(\mathbb{R}, A_{\alpha, \beta}(t) d t\right)\)

Downloads

DOI:

https://doi.org/10.26637/mjm304/007

Abstract

In this paper, using a generalized Jacobi-Dunkl translation operator, we prove an analog of Titchmarsh's theorem for functions satisfying the Jacobi-Dunkl Lipschitz condition in \(L^2\left(\mathbb{R}, A_{\alpha, \beta}(t) d t\right), \alpha \geq \beta \geq \frac{-1}{2}, \alpha \neq\) \(\frac{-1}{2}\)

Keywords:

Jacobi-Dunkl operator, Jacobi-Dunkl transform, generalized Jacobi-Dunkl translation

Mathematics Subject Classification:

42B37
  • S. EL OUADIH Departement of Mathematics, Faculty of Sciences A¨ ın Chock,University Hassan II, Casablanca, Morocco.
  • R. DAHER Departement of Mathematics, Faculty of Sciences A¨ ın Chock,University Hassan II, Casablanca, Morocco.
  • A. BELKHADIR Departement of Mathematics, Faculty of Sciences A¨ ın Chock,University Hassan II, Casablanca, Morocco.
  • Pages: 491-497
  • Date Published: 01-10-2015
  • Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)

H. Ben Mohamed and H. Mejjaoli, Distributional Jacobi-Dunkl transform and applications, Afr. Diaspora J.Math., 1(2004), 24-46.

H. Ben Mohamed, The Jacobi-Dunkl transform on $mathbb{R}$ and the convolution product on new space of distributions, Ramanujan J., 21(2010), 145-171. DOI: https://doi.org/10.1007/s11139-009-9171-3

N. Ben Salem and A. Ahmed Salem, Convolution structure associated with the Jacobi-Dunkl operator on $mathbb{R}$, Ramanuy J., 12(3)(2006), 359-378. DOI: https://doi.org/10.1007/s11139-006-0149-0

W. O. Bray and M. A. Pinsky, Growth properties of Fourier transforms via module of continuity, Journal of Functional Analysis., 255(288), 2256-2285. DOI: https://doi.org/10.1016/j.jfa.2008.06.017

F. Chouchane, M. Mili and K. Trimche, Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on $mathbb{R}$, J.Anal. Appl., 1(4)(2003), 387-412. DOI: https://doi.org/10.1142/S0219530503000247

T. H. Koornwinder, Jacobi functions and analysis on noncompact semi-simple Lie groups. in: R. A. Askey, T. H. Koornwinder and W. Schempp(eds) Special Functions: Group theatrical aspects and applications. D. Reidel, Dordrecht (1984). DOI: https://doi.org/10.1007/978-94-010-9787-1_1

T. H. Koornwinder, A new proof of a Paley-Wiener type theorems for the Jacobi transform, Ark. Math., 13(1975), 145-159. DOI: https://doi.org/10.1007/BF02386203

S. S. Platonov, Approximation of functions in $L_2$-metric on noncompact rank 1 symmetric space. Algebra Analiz., 11(1)(1999), 244-270.

S. S. Platonov, The Fourier transform of function satisfying the Lipshitz condition on rank 1 symetric spaces, Siberian Math. J., 46(2)(2005), 1108-1118. DOI: https://doi.org/10.1007/s11202-005-0105-z

E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Claredon, oxford, 1948; Komkniga, Moxow, 2005.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2015

How to Cite

S. EL OUADIH, R. DAHER, and A. BELKHADIR. “Some Results for the Jacobi-Dunkl Transform in the Space \(L^2\left(\mathbb{R}, A_{\alpha, \beta}(t) D t\right)\)”. Malaya Journal of Matematik, vol. 3, no. 04, Oct. 2015, pp. 491-7, doi:10.26637/mjm304/007.