Stability of traveling fronts in a population model with nonlocal delay and advection

Downloads

DOI:

https://doi.org/10.26637/mjm304/008

Abstract

In this paper, we are concerned with the stability of traveling fronts in a population model with nonlocal delay and advection under the large initial perturbation (i.e. the initial perturbation around the traveling wave decays exponentially as \(x \rightarrow-\infty\), but it can be arbitrarily large in other locations). The globally exponential stability of traveling fronts is established by the weighted-energy method combining with comparison principle, including even the slower waves whose wave speed are close to the critical speed.

Keywords:

Traveling fronts, stability, weighted-energy method

Mathematics Subject Classification:

34G20
  • Li Liu chool of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, Gansu-730070, P.R. China.
  • Yun-Rui Yang School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, Gansu-730070, P.R. China.
  • Shou-Peng Zhang School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, Gansu-730070, P.R. China.
  • Pages: 498-510
  • Date Published: 01-10-2015
  • Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)

J.Al-Omari and S.A. Gourley, Monotone traveling fronts in an age-structured reaction-diffusion model of a single species, J. Math. Biol., (45)(2002), 294-312. DOI: https://doi.org/10.1007/s002850200159

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, (2) (1997), 125-160. DOI: https://doi.org/10.57262/ade/1366809230

S.A. Gourley, Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure, Proc. R. Soc. Lond. Ser. A., (459) (2003), 1563-1579. DOI: https://doi.org/10.1098/rspa.2002.1094

S.A. Gourley, Linear stability of traveling fronts in an age-structrued reaction-diffusion population model, Quart. J. Meth. Appl. Math., (58) (2005), 257-268. DOI: https://doi.org/10.1093/qjmamj/hbi012

D. Liang and J. Wu, Travelling waves and numerical approximations in a reaction-diffusion equation with nonlocal delayed effct, J,Nonlinear Sci., (13) (2003), 289-310. DOI: https://doi.org/10.1007/s00332-003-0524-6

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., (60) (2007), 1-40. DOI: https://doi.org/10.1002/cpa.20154

X. Liang and X.-Q. Zhao, Erratum: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., (61) (2008), 137-138. DOI: https://doi.org/10.1002/cpa.20221

G.R. Li, M. Mei and Y.S. Wong, Nonlinear stability of traveling wavefronts in an age-structured reactiondiffusion population model, Math. Biosci. Engin., (5) (2008), 85-100. DOI: https://doi.org/10.3934/mbe.2008.5.85

C.K. Lin and M. Mei, On traveling wavefronts of Nicholson's blowflies equations with diffusion, Proc. Roy. Soc. Edinburgh Sec. A, (140) (2010), 135-152. DOI: https://doi.org/10.1017/S0308210508000784

L. Liu and Y.R. Yang, Stability of critical waves in a population model with nonlocal delay and advection, preprint.

M. Mei, J.W.-H. So, M.Y. Li and S.S. Shen, Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion, Pro. Roy. Soc. Edinburgh Sec. A., (134) (2004), 579-594. DOI: https://doi.org/10.1017/S0308210500003358

M. Mei, J.W.-H. So, Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation, Pro. Roy. Soc. Edinburgh Sec. A., (138) (2008), 551-568. DOI: https://doi.org/10.1017/S0308210506000333

M. Mei, Stability of traveling wavefronts for time-delay reaction-diffusion equations, Proceedings of the 7th AIMS International Conference (Texas, USA), Discrete Cont. Dyn. Syst., Supplement, (2009), 526-535.

M. Mei, C.K. Lin, C.T. Lin, J.W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation:

(I) Local nonlinearity, J. Differential Equations, (247) (2009), 495-510. DOI: https://doi.org/10.1016/j.jde.2008.12.026

M. Mei, C.-K. Lin, C.-T. Lin, J.W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation: (II) Nonlocal nonlinearity, J. Differential Equations, (247) (2009), 511-529. DOI: https://doi.org/10.1016/j.jde.2008.12.020

M. Mei, C. Ou, and X.Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations SIAM J. Math. Anal, (42) (2010), 2762-2790. "Erratum",SIAM J. Math. Anal., $(44)(2012), 538-540$. DOI: https://doi.org/10.1137/110850633

K.W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations, Trans. Amer. Math. Soc., (302) (1987), 587-615. DOI: https://doi.org/10.1090/S0002-9947-1987-0891637-2

H. Smith and X.Q. Zhao, Global asymptotic stability of the traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., (31) (2000), 514-534. DOI: https://doi.org/10.1137/S0036141098346785

J.W.-H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure, I. Travelling wavefronts on unbounded domains, Proc. Roy. Soc., (457A) (2001), 1841-1853. DOI: https://doi.org/10.1098/rspa.2001.0789

H.R. Thieme and X.Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, (195) (2003), 430-470. DOI: https://doi.org/10.1016/S0022-0396(03)00175-X

Z.C. Wang, W.T. Li, and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, (238) (2007), 153-200. DOI: https://doi.org/10.1016/j.jde.2007.03.025

Z.C. Wang, W.T. Li, and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dynam. Differential Equations, (20) (2008), 573-607. DOI: https://doi.org/10.1007/s10884-008-9103-8

S.L. Wu, W.T. Li and S.Y. Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction-diffusion equations with delay, J. Math. Anal. Appl., (360) (2009), 439-45. DOI: https://doi.org/10.1016/j.jmaa.2009.06.061

S.L. Wu, W.T. Li, Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with nonlocal delay, Discrete Cont. Dyn. Systems, Ser.B, (17) (2012), 347-366. DOI: https://doi.org/10.3934/dcdsb.2012.17.347

J.Y. Wu, D.Wei, M.Mei, Analysis on the critical speed of traveling waves, Mathematics Letters, (20)(2007), $712-718$. DOI: https://doi.org/10.1016/j.aml.2006.08.006

X.Q. Zhao, Dynamical systems in Population Biology, CMS Books Math., (16) (2003), Springer-Verlag, New York.

X.Q. Zhao and D. Xiao, The asymptotic speed of spread and traveling waves for a vector disease model, J. Dynam. Differential Equations, (18) (2006), 1001-1019. DOI: https://doi.org/10.1007/s10884-006-9044-z

X.Q. Zhao and D. Xiao, Erratum: The asymptotic speed of spread and traveling waves for a vector disease model, J. Dynam. Differential Equations, (20) (2008), 277-279. DOI: https://doi.org/10.1007/s10884-007-9086-x

  • Supported by the NSF of China (11301241), Science and Technology Plan Foundation of Gansu Province of China (145RJYA250), Institutions of higher learning scientific research project of Gansu Province of China (2013A-044).

Metrics

Metrics Loading ...

Published

01-10-2015

How to Cite

Li Liu, Yun-Rui Yang, and Shou-Peng Zhang. “Stability of Traveling Fronts in a Population Model With Nonlocal Delay and Advection”. Malaya Journal of Matematik, vol. 3, no. 04, Oct. 2015, pp. 498-10, doi:10.26637/mjm304/008.