On certain subclass of \(p\)-valent analytic functions associated with differintegral operator
Downloads
DOI:
https://doi.org/10.26637/mjm304/009Abstract
In this paper, by making use of the fractional differintegral operator, we introduce a certain subclass of multivalent analytic functions. We study some properties such as inclusion relationship, integral preserving, convolution and some interesting results for multivalent starlikeness are proved.
Keywords:
Multivalent function, subordination, superordination, hadamard product, differintegral operator, starlike functionMathematics Subject Classification:
30C45- Pages: 511-522
- Date Published: 01-10-2015
- Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)
Ahmed S. Galiz, On a Certain Subclass of Multivalent Analytic Functions Associated with a Generalized Fractional Differintegral Operator, International Journal of Mathematical Analysis, Vol. 9, 2015, no. 8, 365 $-383$. DOI: https://doi.org/10.12988/ijma.2015.412402
M. K. Aouf, A. O. Mostafa, A. M. Shahin, S. M. Madian, Applications of differential subordinations for certain classes of $p$-valent functions associated with generalized Srivastava-Attiya operator, J. Inequal. Appl, 2012, 2012:153, $15 mathrm{pp}$. DOI: https://doi.org/10.1186/1029-242X-2012-153
M.K. Aouf, T.M. Seoudy, Some properties of a certain subclass of multivalent analytic functions involving the Liu-Owa operator, Comput. Math. Appl., 60 (2010) 1525?535. DOI: https://doi.org/10.1016/j.camwa.2010.06.036
R. M. El-Ashwah, M. K. Aouf, Differential subordination and superordination for certain subclasses of p-valent functions, Math. Comput. Modelling, 51 (2010), no. 5-6, 349-360. DOI: https://doi.org/10.1016/j.mcm.2009.12.027
S. D. Bernardi, 1969, "Convex and starlike univalent functions", Trans. Amer. Math. Soc., 135, 429-446. DOI: https://doi.org/10.1090/S0002-9947-1969-0232920-2
J. Dziok, H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), no. 1, 1-13. DOI: https://doi.org/10.1016/S0096-3003(98)10042-5
S. P. Goyal, J. K. Prajapat, A new class of analytic p-valent functions with negative coefficients and fractional calculus operators, Tamsui Oxf. J. Math. Sci., 20 (2004), no. 2, 175-186.
Jung, Il Bong; Y. C. Kim, H. M. Srivastava, 1993, "The Hardy space of analytic functions associated with certain one-parameter families of integral operators", J. Math. Anal. Appl., 176 , no. 1, 138-147. DOI: https://doi.org/10.1006/jmaa.1993.1204
TH. MacGregor, Radius of univalence of certain analytic functions, Proc. Am. Math. Soc., (1963), 14, 514520. DOI: https://doi.org/10.1090/S0002-9939-1963-0148891-3
Sanford S. Miller, P. T. Mocanu, Differential subordinations, Theory and applications, Monographs and Textbooks in Pure and Applied Mathematics, 225. Marcel Dekker, Inc., New York, 2000. xii+459 pp. ISBN: 0-8247-0029-5.
Liu, Jin-Lin; Owa, Shigeyoshi. 2004, "Properties of certain integral operator", Int. J. Math. Sci., 3 , no. 1, 69-75.
S.S. Miller, P.T. Mocanu, On some classes of first order differential subordinations, Michigan Math. J., 32 (1985) $185 ? 95$. DOI: https://doi.org/10.1307/mmj/1029003185
A. O. Mostafa, M. K. Aouf, Some subordination results for $p$ - valent functions associated with differintegral operator, Journal of Fractional Calculus and Applications, Vol. 5(1) Jan. 2014, pp. 11-25.
PT. Nehari, Conformal Mapping, McGraw-Hill, New York (1952).
M. Obradovic, S. Owa, On certain properties for some classes of starlike functions, J. Math. Anal. Appl., (1990) 145, 357-364 DOI: https://doi.org/10.1016/0022-247X(90)90405-5
DZ. Pashkouleva, The starlikeness and spiral-convexity of certain subclasses of analytic functions. In: Srivastava, HM, Owa, S (eds.) Current Topics in Analytic Function Theory, pp. 266-273. World Scientific, Singapore (1992) DOI: https://doi.org/10.1142/9789814355896_0022
J. Patel, A.K. Mishra, On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl., 332 (2007) 109?22. DOI: https://doi.org/10.1016/j.jmaa.2006.09.067
J.K. Prajapat, R.K. Raina, New sufficient conditions for starlikeness of analytic functions involving a fractional differintegral operator, Demonstratio Math., 43 (1) (2010) 805?13. DOI: https://doi.org/10.1515/dema-2010-0408
Salagean, Grigore Stefan, Subclasses of univalent functions, Complex analysis?ifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983. http://dx.doi.org/10.1007/bfb0066543. DOI: https://doi.org/10.1007/BFb0066543
R. Singh, S. Singh, Convolution properties of a class of starlike functions, Proc. Am. Math. Soc.,(1989) 106, $145-152$. DOI: https://doi.org/10.1090/S0002-9939-1989-0994388-6
C. Selvaraj, K. R. Karthikeyan, Differential subordination and superordination for certain subclasses of analytic functions, Far East J. Math. Sci., (FJMS), 29 (2008), no. 2, 419-430.
C. Selvaraj, O. S. Babu and G. Murugusundaramoorthy, Some Subclasses of p-Valent Functions Defined by Generalized Fractional Differintegral Operator -II, J. Ana. Num. Theor., (2015) 3, No. 1, 39-45 DOI: https://doi.org/10.18576/msl/050107
H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination, Integral Transforms Spec. Funct., 18 (2007), no. 3-4, 207-216. DOI: https://doi.org/10.1080/10652460701208577
Huo Tang, Guan-Tie Deng, Shu-Hai Li, Certain subclasses of $p$-valently analytic functions involving a generalized fractional differintegral operator, J. Egyptian Math. Soc., 22 (2014), no. 1,36-44. DOI: https://doi.org/10.1016/j.joems.2013.06.009
ET. Whittaker, GN. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, 4th edn. Cambridge University Press, Cambridge (1927)
DR. Wilken, J. Feng, A remark on convex and starlike functions, J. Lond. Math. Soc., Ser., (1980) 2, 21, 287-290. DOI: https://doi.org/10.1112/jlms/s2-21.2.287
- NA
Similar Articles
- S. EL OUADIH, R. DAHER, A. BELKHADIR, Some results for the Jacobi-Dunkl transform in the space \(L^2\left(\mathbb{R}, A_{\alpha, \beta}(t) d t\right)\) , Malaya Journal of Matematik: Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.