Total eccentricity index of some composite graphs
Downloads
DOI:
https://doi.org/10.26637/mjm304/010Abstract
The total eccentricity index of a graph \(G\) is the sum of eccentricities of all the vertices of \(G\). In this paper, we first derive some sharp upper and lower bounds of total eccentricity index of different subdivision graphs and then determine some explicit expression of the total eccentricity index of the double graph, extended double cover graph and some generalized thorn graphs.
Keywords:
Eccentricity, graph invariant, total eccentricity index, composite graphs, graph operationsMathematics Subject Classification:
05C35- Pages: 523-529
- Date Published: 01-10-2015
- Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)
N. Alon, Eigenvalues and expanders, Combinatorica, 6(1986), 83-96. DOI: https://doi.org/10.1007/BF02579166
A. R. Bindusree, V. Lokesha and P.S. Ranjini, Eccentric connectivity index and polynomial of some graphs, British J. Math. Comp. Sc., 6(6)(2015), 457-463. DOI: https://doi.org/10.9734/BJMCS/2015/15137
P. Dankelmann, W. Goddard and C.S. Swart, The average eccentricity of a graph and its subgraphs, Util. Math., 65(2004), 41-51.
N. De, On eccentric connectivity index and polynomial of thorn graph, Appl. Math., 3(2012), 931-934. DOI: https://doi.org/10.4236/am.2012.38139
N. De, Augmented eccentric connectivity index of some thorn graphs, Intern. J. Appl. Math. Res., $1(4)(2012), 671-680$. DOI: https://doi.org/10.14419/ijamr.v1i4.326
N. De, A. Pal and S.M.A. Nayeem, On the modified eccentric connectivity index of generalized thorn graph, Intern. J. Comput. Math., (2014), doi: 10.1155/2014/436140. DOI: https://doi.org/10.1155/2014/436140
N. De, S.M.A. Nayeem and A. Pal, Total eccentricity index of generalized hierarchical product of graphs, Intern. J. Appl. Comput. Math., (2014), doi: 10.1007/s40819-014-0016-4.
N. De, S.M.A. Nayeem and A. Pal, Connective eccentricity index of some thorny graphs, Ann. Pure Appl. Math., 7(1)(2014), 59-64. DOI: https://doi.org/10.1007/s40819-014-0016-4
N. De, A. Pal and S.M.A. Nayeem, On some bounds and exact formulae for connective eccentric indices of graphs under some graph operations, Intern. J. Appl. Comb., (2014), doi: 10.1155/2014/579257. DOI: https://doi.org/10.1155/2014/579257
T. Dehghan-Zadeh, H. Hua, A.R. Ashrafia and N. Habibi, Remarks on a conjecture about Randić index and graph radius, Miskolc Math. Notes, 14(3)(2013), 845-850. DOI: https://doi.org/10.18514/MMN.2013.662
M. Eliasi and B. Taeri, Four new sums of graphs and their Wiener indices, Discret. Appl. Math., 157(2009), 794-803. DOI: https://doi.org/10.1016/j.dam.2008.07.001
K. Fathalikhani, H. Faramarzi and H. Yousefi-Azari, Total eccentricity of some graph operations, Electron. Notes Discret. Math., 45(2014), 125-131. DOI: https://doi.org/10.1016/j.endm.2013.11.025
I. Gutman, Distance in thorny graph, Publications de I'Institut Mathématique (Beograd), 63(1998), 31-36.
H. Hua, S. Zhang and K. Xu, Further results on the eccentric distance sum, Disc. Appl. Math., 160(2012), $170-180$. DOI: https://doi.org/10.1016/j.dam.2011.10.002
K. M. Kathiresan and C. Parameswaran, Certain generalized thorn graphs and their Wiener indices, J. Appl. Math. Informatics, 30(5-6)(2012), 793-807.
Y. Tang and B. Zhou, On average eccentricity, MATCH Commun. Math. Comput. Chem., 67 (2012) 405-423.
W. Yan, B.Y. Yang and Y.N. Yeh, The behavior of Wiener indices and polynomials of graphs under five graph decorations, Appl. Math. Lett., 20(2007), 290-295. DOI: https://doi.org/10.1016/j.aml.2006.04.010
Z. Yarahmadi, S. Moradi and T. Dolić, Eccentric connectivity index of graphs with subdivided edges, Elec. Notes Disc. Math., 45(2014), 167-176. DOI: https://doi.org/10.1016/j.endm.2013.11.031
- NA
Similar Articles
- Li Liu , Yun-Rui Yang, Shou-Peng Zhang, Stability of traveling fronts in a population model with nonlocal delay and advection , Malaya Journal of Matematik: Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.