Qualitative behavior of rational difference equations of higher order
Downloads
DOI:
https://doi.org/10.26637/mjm304/011Abstract
In this paper we study the behavior of the solution of the following rational difference equation
$$
x_{n+1}=\frac{a x_{n-r}^2+b x_{n-l} x_{n-k}^2}{c x_{n-r}^2+d x_{n-l} x_{n-k}^2} \quad n=0,1, \ldots,
$$
where the parameters \(a, b, c\) and \(d\) are positive real numbers and the initial conditions \(x_{-t}, x_{-t+1}, \ldots, x_{-1}\) and \(x_0\) are posistive real numbers where \(t=\max \{r, k, l\}\).
Keywords:
stability, rational difference equation, global attractor, periodic solutionMathematics Subject Classification:
39A10- Pages: 530-539
- Date Published: 01-10-2015
- Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)
R. P. Agarwal and E. M. Elsayed, On the solution of fourth-order rational recursive sequence, Advanced Studies in Contemporary Mathematics, 20 (4) (2010), 525-545.
E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the difference equation $x_{n+1}=a x_n-frac{b x_n}{c x_n-d x_{n-1}}$, Adv. Differ. Equ, Volume 2006 (2006), Article ID 82579,1-10.
E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Global behavior of the solutions of difference equation, Adv. Differ. Equ, Volume (2011), 1-16. DOI: https://doi.org/10.1186/1687-1847-2011-28
E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Qualitative behavior of higher order difference equation, Soochow Journal of mathematics, 33 (2007), 861-873.
E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Global attractivity and periodic character of a fractional difference equation of order three, Yokohama Math. J, 53(2007), 89-100.
E. M. Elabbasy and E. M. Elsayed, Global attractivity and periodic nature of a difference equation, World Appl. Sci. J, $12(2011), 39-47$.
E. M. Elsayed, On the solution of some difference equations, European Journal of Pure and Applied. Mathematics, 4 (2011), 287-303.
E. M. Elsayed, Solution and attractivity for a rational recursive sequence, Discrete Dynamics in Nature and Society, Volume (2011), Article ID 982309, 17 pages. DOI: https://doi.org/10.1155/2011/982309
E. M. Elsayed, On the Global attractivity and the solution of recursive sequence, Studia Sci. Hungarica, $47(2010), 401-418$. DOI: https://doi.org/10.1556/sscmath.2009.1139
E. M. Elsayed, Dynamics of recursive sequence of order two, Kyungpook Math. J., 50 (2010), $483-497$. DOI: https://doi.org/10.5666/KMJ.2010.50.4.483
S. Elaydi, An Introduction to Difference Equations. New York: Springer-Verlag, 1999. DOI: https://doi.org/10.1007/978-1-4757-3110-1
M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations, London: Chapman h Hall/CRC, 2001. DOI: https://doi.org/10.1201/9781420035384
E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman & Hall/CRC, 2005. DOI: https://doi.org/10.1201/9781420037722
E. A. Grove, C. M. Kent, G. Ladas, R. Levins, and S. Valicenti, Global stability in some population models, in Proceedings of the 4th International Conference on Difference Equations and Applications, Poznan, Poland, August 1998.
G. Karakostas, Convergence of a difference equation via the full limiting sequences method, Differential Equations and Dynamical System 1 (1993), 289-294.
V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Dordreht/Boston/London: Kluwer Academic Publishers, 1993. DOI: https://doi.org/10.1007/978-94-017-1703-8
M. Saleh, S. A. Baha, Dynamics of a higher order rational difference equation, Appl. Math. Comp, 181(2006), 84-102. DOI: https://doi.org/10.1016/j.amc.2006.01.012
A. Rafiq, Convergence of an iterative acheme due to Agarawal et al.,Rostock. Math. Kolloq. 61(2006), 95-105 .
M. Saleh, M. Aloqeili, On the difference equation $x_{n+1}=A+frac{x_n}{x_{n-k}}$. Appl. Math. Comp. 171(2005), 862-869 DOI: https://doi.org/10.1016/j.amc.2005.01.094
M. Saleh, M. Aloqeili, On the difference equation $x_{n+1}=A+frac{y_n}{y_{n-k}}$ with $A<0$. Appl. Math. Comp. $176(2006), 359-363$ DOI: https://doi.org/10.1016/j.amc.2005.09.023
D. Simsek, C. Cinar, I. Yalcinkaya, On the recursive sequence $x_{n+1}=frac{x_{n-3}}{1+x_{n-1}}$. Int. J. Contemp. Math. Sci. $(10)(2006), 475-480$ DOI: https://doi.org/10.12988/ijcms.2006.06052
C. Wang, S. Wang, T. Li, Q. Shi, Asymptotic behavior of equilibrium point for a class of nonlinear difference equation. Adv. Differ Equ. volume (2009), 8 pages. DOI: https://doi.org/10.1155/2009/214309
C. Wang, Q. Shi, S. Wang, Asymptotic behavior of equilibrium point for a family of rational difference equation. Adva. Differ. Equ. volume (2010), 10 pages. DOI: https://doi.org/10.1155/2010/505906
C. Wang, S. Wang, Z. Wang, H. Gong, R. Wang, Asymptotic stability for a class of nonlinear difference equation, Discrete Dynamics in Natural and Society (2010), 10 pages. DOI: https://doi.org/10.1155/2010/791610
X. Yang, W. Su, B. Chen, G. M. Megson and D. J. Evans, On the recursive sequence $x_{n+1}=frac{a x_{n-1}+b x_{n-2}}{c+d x_{n-1} x_{n-2}}$, Appl. Math. Comp, $162(2005), 1485-1496$. DOI: https://doi.org/10.1016/j.amc.2004.03.023
X. X. Yan, W. T. Li, Z. Zhao, Global asymptotic stability for a higher order nonlinear rational difference equations, Appl. Math. Comp, 182 (2006), 1819-1831. DOI: https://doi.org/10.1016/j.amc.2006.06.019
I. Yalcinkaya, On the difference equation $x_{n+1}=alpha+frac{x_{n-m}}{x_n^k}$, Discrete Dynamics in Natural and Society, (2008) 8 pages. DOI: https://doi.org/10.1155/2008/820629
I. Yalcinkaya, On the global asymptotic stability of a second order system of difference equations. Discrete Dynamics in Natural and Society (2008), 12 pages. DOI: https://doi.org/10.1155/2008/860152
I. Yalcinkaya, C. Cinar, On the dynamics of the difference equation $x_{n+1}=frac{a x_{n-k}}{b+x_n^p}$, Fasciculi Mathematici 42(2009), 133-139.
I.Yalcinkaya, C. Cinar, M. Atalay , On the solutions of systems of difference equations, Adv. Differ. Equ. (2008), 9 pages. DOI: https://doi.org/10.1155/2008/143943
E. M.E. Zayed, , M. A. El-Moneam, On the rational recursive sequence $x_{n+1}=frac{alpha+beta x_n+gamma x_{n-1}}{A+B x_n+C x_{n-1}}$. Communications on Applied Nonlinear Analysis 12 , 1(2005), 15-28 .
E. M.E. Zayed, M. A. El-Moneam, On the rational recursive sequence $x_{n+1}=a x_n-frac{b x_n}{c x_n-d x_{n-k}}$. Communications on Applied Nonlinear Analysis 15 (2005), 47-57.
- NA
Similar Articles
- Chellian Selvaraj, Ganapathi Thirupathi, On certain subclass of \(p\)-valent analytic functions associated with differintegral operator , Malaya Journal of Matematik: Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.