Orthogonal stability of the new generalized quadratic functional equation

Downloads

DOI:

https://doi.org/10.26637/mjm304/013

Abstract

In this paper, the authors investigate the Hyers - Ulam - Rassias stability and J. M. Rassias mixed type product- sum of powers of norms stability of a orthogonally generalized quadratic functional equation of the form
f(nx+y)+f(nxy)=n[f(x+y)+f(xy)]+2n(n1)f(x)2(n1)f(y),
where f:AB be a mapping from a orthogonality normed space A into a Banach Space B, is orthogonality in the sense of Ratz with xy for all x,yA.

Keywords:

Hyers - Ulam - Rassias stability, J. M. Rassias mixed type product - sum of powers of norms stability, Orthogonally quadratic functional equation, Orthogonality space, Quadratic mapping

Mathematics Subject Classification:

39B55, 39B52, 39B82, 46H25
  • K. Ravi Department of Mathematics, Sacred Hart College, Tiruppatur, Tamil Nadu, India.
  • S. Suresh Research Scholar,Bharathiar University, Coimbatore-642002, Tamil Nadu, India.
  • Pages: 554-562
  • Date Published: 01-10-2015
  • Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)

J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989. DOI: https://doi.org/10.1017/CBO9781139086578

P.W.Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86. DOI: https://doi.org/10.1007/BF02192660

S.Czerwik, On the stability of the quadratic mappings in normed spaces, Abh.Math.Sem.Univ Hamburg., 62 (1992), 59-64. DOI: https://doi.org/10.1007/BF02941618

F. Drljevic, On a functional which is quadratic on A-orthogonal vectors, Publ. Inst. Math. (Beograd) 54, $(1986), 63-71$.

M. Fochi, Functional equations in A-orthogonal vectors, Aequationes Math. 38, (1989), 28-40. DOI: https://doi.org/10.1007/BF01839491

P.Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., $184(1994), 431-436$. DOI: https://doi.org/10.1006/jmaa.1994.1211

R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. 43, (1995), 143-151.

D.H.Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci., U.S.A.,27 (1941) $222-224$. DOI: https://doi.org/10.1073/pnas.27.4.222

Pl. Kannappan, Quadratic functional equation inner product spaces, Results Math. 27, No.3-4, (1995), 368-372. DOI: https://doi.org/10.1007/BF03322841

M. S. Moslehian, On the orthogonal stability of the Pexiderized quadratic equation, J. Differ. Equations Appl. (to appear).

M. S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation, J. Math. Anal. Appl. (to appear).

J.M.Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46 (1982) 126-130. DOI: https://doi.org/10.1016/0022-1236(82)90048-9

J.M.Rassias, On approximately of approximately linear mappings by linear mappings, Bull. Sc. Math, 108 (1984), 445-446.

Th.M.Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297300. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1

K.Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08,36 47.

K. Ravi R. Kodandan and P. Narasimman, Ulam stability of a quadratic Functional Equation, International Journal of Pure and Applied Mathematics 51(1) 2009, 87- 101.

F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53, (1983), 113-129. DOI: https://doi.org/10.1007/BF02924890

Gy. Szabo, Sesquilinear-orthogonally quadratic mappings, Aequationes Math. 40, (1990), 190-200. DOI: https://doi.org/10.1007/BF02112295

S.M.Ulam, Problems in Modern Mathematics, Rend. Chap.VI,Wiley, New York, 1960.

F. Vajzovic, Uber das Funktional H mit der Eigenschaft: $(x, y)=0 Rightarrow H(x+y)+H(x-y)=2 H(x)+2 H(y)$, Glasnik Mat. Ser. III 2 (22), (1967), 73-81.

  • NA

Metrics

PDF views
50
Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20268
|

Published

01-10-2015

How to Cite

K. Ravi, and S. Suresh. “Orthogonal Stability of the New Generalized Quadratic Functional Equation”. Malaya Journal of Matematik, vol. 3, no. 04, Oct. 2015, pp. 554-62, doi:10.26637/mjm304/013.