The dom-chromatic number of a graph
Downloads
DOI:
https://doi.org/10.26637/mjm401/001Abstract
For a given \(\chi\)-coloring of a graph \(G=(V, E)\). A dominating set \(S \subseteq V(G)\) is said to be dom-coloring set if it contains at least one vertex from each color class of \(G\). The dom-chromatic number \(\gamma_{d c}(G)\) is the minimum cardinality taken over all dom-coloring sets of \(G\). In this paper, we initiate a study on \(\gamma_{d c}(G)\) and its exact values for some classes of graphs have been established. Also its relationship with other graph theoretic parameters are investigated.
Keywords:
Graph, Chromatic number, Domination number, Dom-chromatic numberMathematics Subject Classification:
05C70, 05C15- Pages: 1-7
- Date Published: 01-01-2016
- Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)
B. Chaluvaraju, C. Nandeesh Kumar and C. Appajigowda, The neighbor coloring set in graphs, lut. J. of Applied Mathematics and Computation, 4(3), (2012), 307-311.
B. Chaluvaraju, C. Nandeesh Kumar and $mathrm{C}$. Appajigowda, The Dom-Chromatic index of a graph. International ]. of Math. Sci. & Engg. Appls., 8(6) (2014), 43-49.
D. C. Fisher, P. A. Mckenna and E. D. Boyer, Hamiltoncity, diameter, domination, packing and biclique partition of Mycielski's graphs, Discrete Appl, Math. 84 (1998), 93-105. DOI: https://doi.org/10.1016/S0166-218X(97)00126-1
R. M. Gera, On dominator coloring in graphs, Gmph Theory Notes New York. LII (2007), 25-30.
Harary, F, Graph theory, Addism-Wesley, Reading Mass (1969). DOI: https://doi.org/10.21236/AD0705364
T. W. Haynes, S. T. Hedetniemi and P. J. Slater; Fundamentals of domination in graphs, Marcel Dekker. New York (1998).
T. W. Haynes, S. T. Hedetniemi and P. J. Slater; Domination in graphs; Advanced topics, Marcel Dekker. New York (1998).
T. R. Jensen and B. Toft, Graph Coloring Problem, Jolin Wiley & Sons, Inc, New York (1995). DOI: https://doi.org/10.1002/9781118032497
J. Mycielski, Sur le colorings de graphes, Callog. Math. 3 (1955), 161-162. DOI: https://doi.org/10.4064/cm-3-2-161-162
E. Sampathkumar and G. D. Kamath A generalization of chromatic index, Discrefe Mathematics 124 (1994), $173-177$ DOI: https://doi.org/10.1016/0012-365X(94)90088-4
E. Sampathkumar and H. B. Walikar, On Splitting Graph of a Graph, J. Karmatak Liniv. Sci., 25(13),(1980), $13-16$.
S. K. Vaidya and Rakhimol V. Isaac, b-chromatic number of some degree splitting graphs, Malaya Journal of Matemtatik, 2(3),(2014), 249-253. DOI: https://doi.org/10.26637/mjm203/010
S. K. Vaidya and M. S. Shukla, b-Chromatic number of some cycle related graphs, International journal of Mathematics and Soft Computing, 4(2)(2014), 113-127. DOI: https://doi.org/10.26708/IJMSC.2014.2.4.12
H. B. Walikar, B. D Acharya, E. Sampathkumar, Recent developments in the theory of domination in graphs. In:MRI Lecture Notes in Mathematics. Allahabad: The Mehta Research Institute of Mathematics and Mathematical Physics 1979.
- NA
Similar Articles
- J. Vasundhara Devi, S.Srinivasa Rao, I.S.N.R.G.Bharat, Periodic boundary value problem for the graph differential equation and the matrix differential equation , Malaya Journal of Matematik: Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.