Interval-valued fuzzy ideals in ternary semirings
Downloads
DOI:
https://doi.org/10.26637/mjm401/003Abstract
In this paper we introduce the notion of interval-valued fuzzy ternary subsemirings and interval-valued fuzzy ideals in ternary semirings and investigate some of the properties. Also the homomorphism image and inverse image are investigated.
Keywords:
Interval-valued fuzzy ternary subsemirings, interval-valued fuzzy idealMathematics Subject Classification:
08A72, 16Y60, 20M12, 17A40- Pages: 19-24
- Date Published: 01-01-2016
- Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)
T.K.Dutta, S. Kar, On regular temary semirings, Advances in Algebra, Procerliens of the ICM Satellite Couference in A Syebnt and Related Toynics, World Scientific, Pp. 343-355, (2003). DOI: https://doi.org/10.1142/9789812705808_0027
T.K.Dutta, S, Kar, On the Jacobson radical of a ternary semiring, SEA Buil. Math., 28 1, (2004) 1-13.
T.K.Dutta, 5. Kar, A note on the Jacobson radicals of ternary semirings, SEA Bu[l. Matti., V29, N2, pp. $321-331,(2005)$.
T.K.Dutta, S. Kar, Two types of Jacobson rudicals of ternary semirings,SEA Bull. Math., V29, N4, Pp. $677-687,(2005)$
T.K.Dutta, S. Kar, On prime ideals and prime radical of temary semirings, BudI. Cal. Math. Soc., V97, N5, Pp. 445-454, (2005).
T.K.Dutta, S. Kar, On semiprime ideals and irneducible ideals of temary semirings,BuIl. Cal. Math. Socir $mathrm{V} 97, mathrm{~N} 5, mathrm{pp}, 467-476,(2005)$.
T.K.Dutta, S. Kar, A note on regular ternary semirings, Kyıiggoak Math. J., V46, N3, Pp. 357-365, (2006).
I. Grattan Guiness, Fuzzy membership mapped onto interval and manu-valued quantities, Z. Math. Logik. Grundliaden Math, 32(3), 409-424, (2009).
K.U. Jahn, Intervall-wertige mengen Math. Nach., 68, 115-132, (1975). DOI: https://doi.org/10.1002/mana.19750680109
S.Kar, On quasi-ideals and bi-ideals in ternary semirings, Int. J. Moth. Meth. 5ci, V2005, N18, pp. 3015$3023,(2005)$ DOI: https://doi.org/10.1155/IJMMS.2005.3015
J. Kavikumar, A.B. Khamis, Fuzzy ideals and fuzzy quasi-ideals in ternary semirings, LAENG Jnt. J. Appi. Math., V37, N2, Pp. 102-106, (2007).
D.H.Lehmer, A temary analogue of abelian groups, Amer. J. Moth. V59, pp. 329-338, (1932). DOI: https://doi.org/10.2307/2370997
W.G.Lister, Temary rings, Trans, Amer. Meth. Soc, V154, PP, 37-55, (1971). DOI: https://doi.org/10.1090/S0002-9947-1971-0272835-6
R. Sambuc Fonctions $phi$-floues Ph.D thesis, Univ. Marseille, France, (1975).
L.A Zadeh, Fuzzy sets, Jrifurm. and Cantrut., V8, pp. 338-363, (1965) DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning Jnform. and Control, 8, pp. 199-249, (1975). DOI: https://doi.org/10.1016/0020-0255(75)90036-5
- NA
Similar Articles
- S. Uma Maheswari, Teresa Arockiamary Santiago, Dom-chromatic number of certain cycle related graphs , Malaya Journal of Matematik: Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)
- B. Chaluvaraju, C. Appajigowda, The dom-chromatic number of a graph , Malaya Journal of Matematik: Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.