\(n\)-power quasi-isometry and \(n\)-power normal composition operators on \(L^2\)-spaces
Downloads
DOI:
https://doi.org/10.26637/mjm401/006Abstract
In this paper, we give the characterizations of \(n\)-power Quasi-isometry and \(n\)-power normal composition operators. Further, we also discuss the characterization of the \(n\)-power quasi-isometry composite multiplication operator.
Keywords:
composite multiplication operator, \(n\)-power quasi-isometry operator , \(n\)-power normal operatorMathematics Subject Classification:
47B20, 47B33, 47B38- Pages: 42-52
- Date Published: 01-01-2016
- Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)
C. Burnap, I. B. Jung and A. Lambert, Separating partial normality classes with composition opertors, J.Operator Theory, 53(2) (2005), 381-397.
D. J. Harrington and R. Whitley, Seminormal composition operator, J. Operator Theory, 11(1981), $125-135$.
A. A. S. Jibril, On n-Power normal operators, The Arabian Journal for Science and Engineering, 33(2A)(2008), $247-251$.
J. S. I. Mary, Spectra of composition operators and their Alugthe transformations, Indian I. of Mathematics,51(3)(2009), 549-555.
J. S. I. Mary and P. Vijayalakshmi, A note on the class of N-power quasi isometry, International J. Applied Mathematics and Statistical Sciences, 2(5)(2013), 1-8.
W. C. Ridge, Proc. Am. Math. Soc., 37(1973), 121-127. DOI: https://doi.org/10.1090/S0002-9939-1973-0306457-2
S. Senthil, P. Thangaraju and D. C. Kumar, n-normal and n-quasi-normal composite multiplication operator on $L^2$-spaces, J. Scientific Research and Reports, 8(4)(2015), 1-9. DOI: https://doi.org/10.9734/JSRR/2015/18661
R. K. Singh, Compact and quasinormal composition operators, Proc. Amer. Math. Soc.,45(1974), 80-82. DOI: https://doi.org/10.1090/S0002-9939-1974-0348545-1
Similar Articles
- Kailash C. Madan, On optional deterministic server vacations in a batch arrival queueing system with a single server providing first essential service followed by one of the two types of additional optional service , Malaya Journal of Matematik: Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.