A study on linear and non linear Schrodinger equations by reduced differential transform method
Downloads
DOI:
https://doi.org/10.26637/mjm401/008Abstract
In this paper, reduced differential transform method (RDTM) is used to obtain the exact solution of nonlinear Schrodinger equation. Compared to other existing analytical/numerical methods, RDTM is more efficient and easy to apply.
Keywords:
Non-linear Schrodinger equations, reduced differential transform, reduced differential inverse transform, analytic solutionMathematics Subject Classification:
35J10, 35F25- Pages: 59-64
- Date Published: 01-01-2016
- Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)
Mousa MM, Ragab SF, Application of the homotopy perturbation method to linear and nonlinear Schrodinger equation, Z. Naturforsch. Sect. A 63 (2008), 140-144. DOI: https://doi.org/10.1515/zna-2008-3-404
Wazwaz AM, A study on linear and nonlinear Schrodinger equations by variation iteration method, Chaos, Solitons and Fractals, 37 (2008), 1136-1142. DOI: https://doi.org/10.1016/j.chaos.2006.10.009
Ravikanth ASV, Aruna K, Two dimensional differential transform method for solving linear and nonlinear Schrodinger equations, Chaos, Solitons and Fractals, 41 (2009), 2277-2281. DOI: https://doi.org/10.1016/j.chaos.2008.08.037
Wang $mathrm{H}$, Numerical studies on the split-step finite difference method for nonlinear Schrodinger equation, Appl. Math. Comput., 170 (2005), 17-35. DOI: https://doi.org/10.1016/j.amc.2004.10.066
Biazar J, Ghazvini H, Exact solution for Schrodinger equations by Hes homotopy perturbation method, Phys. Let. A 366 (2007), 79-84. DOI: https://doi.org/10.1016/j.physleta.2007.01.060
Sadighi A, Ganji DD, Analytic treatment of linear and nonlinear Schrodinger equation: A study with homotopy perturbation and Adomian decomposition methods, Phys. Lett A. 372 (2008), 465-9. DOI: https://doi.org/10.1016/j.physleta.2007.07.065
Borhanifar A, Reza Abazari, Exact solutions for nonlinear Schrodinger equation by differential transform method, J. Appl. Math. Comput., 35 (2011), 37-51. DOI: https://doi.org/10.1007/s12190-009-0338-2
Alomari AK, Noorani MSM, Wazar R, Explicit series solutions of some linear and nonlinear Schrodinger equations via the homotopy analysis method, Commun. Nonlinear Sci-Numer. Simul. (2008). DOI: https://doi.org/10.1016/j.cnsns.2008.01.008
Khuri SA, A new approach to the cubic Schrodinger equation: an application of the decomposition technique, Appl. Math. Comput., 97 (1998), 251-254. DOI: https://doi.org/10.1016/S0096-3003(97)10147-3
Srivastava VK, Nachiketa Mishra, Sunil kumar, Brajesh kumar singh, Aswathi MK, Reduced differential transform method for solving $(n+1)$-Dimensional Burgers equations, Egyptian journal of Basic and Applied sciences, 1 (2014), 115-119. DOI: https://doi.org/10.1016/j.ejbas.2014.05.001
Keskin Y, Galip Oturanc, Reduced differential transform method for partial differential equations, Int. Journal of nonlinear sciences and numerical simulation, 10(6) (2009), 741-749. DOI: https://doi.org/10.1515/IJNSNS.2009.10.6.741
Keskin Y, Galip Oturanc, Reduced differential transform method for generalized KdV equations, Math. Comput. Appl., 15(3) (2010), 382-393. DOI: https://doi.org/10.3390/mca15030382
Keskin Y, Ph.D Thesis, Selcuk University, 2010 (in Turkish).
Brahim Benhammouda, Hector Vazquez-Leal, Arturo Sarmiento-Reyes, Modified Reduced Differential transform method for partial differential - algebraic equations, Journal of applied mathematics, 2014, 1-9, Article ID 279481. DOI: https://doi.org/10.1155/2014/279481
Saravanan A, Magesh N, A comparison between the reduced differential transform method and the Adomian decomposition method for the Newell-Whitehead-Segel equation, Journal of Egyptian mathematical society, 21 (2013), 259-265. DOI: https://doi.org/10.1016/j.joems.2013.03.004
Abazari R, Abazari M, Numerical study of Burgers-Huxley equations via reduced differential transform method, Comput. Appl. Math., 32(1) (2013), 1-17. DOI: https://doi.org/10.1007/s40314-013-0001-2
Abazari R, Abazari M, Numerical simulation of generalized Hirota-Satsuma coupled KdV equation by RDTM and comparison with DTM, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 619-629. DOI: https://doi.org/10.1016/j.cnsns.2011.05.022
- NA
Similar Articles
- P. Vijayalakshmi, J. Stella Irene Mary, \(n\)-power quasi-isometry and \(n\)-power normal composition operators on \(L^2\)-spaces , Malaya Journal of Matematik: Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.