Oscillation of first order neutral difference equations
Downloads
DOI:
https://doi.org/10.26637/mjm401/009Abstract
In this paper, we consider a class of first order neutral difference equations of the form
$$
\Delta[r(n)(x(n)+p(n) x(n-\tau))]+q(n) x(n-\sigma)=0, \quad n \geq n_0
$$
Some sufficient conditions for the oscillation of all solutions of given system are established. Our result extend and improve some of the previous results in the literature. Some examples are considered to illustrate our results.
Keywords:
Oscillation, nonoscillation, neutral, difference equationsMathematics Subject Classification:
39A10, 39A12- Pages: 65-78
- Date Published: 01-01-2016
- Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)
R. P. Agarval, Difference Equations and Inequalities: Theory, Methods, and Applications, Marcel Dekker Inc., New York, 2000. DOI: https://doi.org/10.1201/9781420027020
R. P. Agarval, Advanced Topics in Difference Equations, Kluwer Academic Publiers Inc., 1997. DOI: https://doi.org/10.1007/978-94-015-8899-7
M. P. Chen, B. S. Lalli and J. S. Yu, Oscillation in neutral delay difference equations with variable coefficients, Comput. Math. Appl., 29(3)(1995), 5 - 11. DOI: https://doi.org/10.1016/0898-1221(94)00223-8
R. Devancy, An Introductions to Chaotic Dynamical System, Addison - Wesley Publishing Company, Inc., California Benjamin/Cummings, 1989.
D. A. Georgiu, E. A. Grove and G. Ladas, Oscillations of neutral difference equations, Appl. Anal., 33(1989), 243-253. DOI: https://doi.org/10.1080/00036818908839876
I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Oxford University Press, Oxford, 1991. DOI: https://doi.org/10.1093/oso/9780198535829.001.0001
B. S. Lalli, Oscillation theory for neutral difference equations, Comput. Math. Appl., 28(1994), 191-202. DOI: https://doi.org/10.1016/0898-1221(94)00107-3
R. E. Mickens, Difference Equations, Van Nostrand Reinhold Company Inc., New York 1987.
A. Murugesan and R. Suganthi, Sufficient conditions for oscillation of first order neutral difference equations with variable coefficients, Global Journal of Pure and Applied Mathematics, 5(2014), 755-763.
A. Murugesan and P. Sowmiya, Necessary and sufficient conditions for oscillations of first order neutral delay difference equations with constant coefficients, International Journal of Advanced Mathematical Sciences, vol3, No1(2015), 12-24. DOI: https://doi.org/10.14419/ijams.v3i1.4462
A. Murugesan and P. Sowmiya, Necessary and sufficient conditions for oscillations of first order neutral delay difference equation, Global Journal of Mathematical Analysis, Vol 3, No 2(2015), 61-72. DOI: https://doi.org/10.14419/gjma.v3i2.4560
Ö. Öcalan, O. Duman, Oscillation analysis of neutral difference equations with delays, Chaos, Solitons and Fractals, 39(2009), 261-270. DOI: https://doi.org/10.1016/j.chaos.2007.01.094
Ö. Öcalan, Oscillation criteria for systems of difference equations with variable coefficients, Appl. Math. E-Notes, 6(2006), 119-125.
R. Rath, L. N. Padhy and N. Misra, Oscillation and nonoscillation of neutral difference equations of first order with positive and negative coefficients, Fasciculi Mathematici, 37(2007), 57-65.
X. H. Tang, J. S. Yu and D. H. Peng, Oscillation and nonoscillation of neutral difference equations with positive and negative coefficients, Comput. Math. Appl., 39(2000), 169-181. DOI: https://doi.org/10.1016/S0898-1221(00)00073-0
X. H. Tang and X. Lin, Necessary and sufficient conditions for oscillation of first-order nonlinear neutral difference equations, Comput. Math. Appl., 55(2008), 1279-1292. DOI: https://doi.org/10.1016/j.camwa.2007.06.009
Ying Gao. and Guang Zhang, Oscillation of nonlinear first order neutral difference equations, App. Math. E-Notes, 1(2001), 5-10.
Y. Zhou and B. G. Zhang, The semicycles of solutions of neutral difference equations, Appl. Math. Letters, 13(2000), 59-66. DOI: https://doi.org/10.1016/S0893-9659(00)00034-3
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.