Orthogonal stability of the new generalized quadratic functional equation
Downloads
DOI:
https://doi.org/10.26637/mjm401/011Abstract
In this paper, the authors investigate the Hyers - Ulam - Rassias stability and J. M. Rassias mixed type product- sum of powers of norms stability of a orthogonally generalized quadratic functional equation of the form
\begin{align*}
&f(n x+y)+f(n x-y)=n[f(x+y)+f(x-y)]\\&+2 n(n-1) f(x)-2(n-1) f(y) .
\end{align*}
Where \(f: A \rightarrow B\) be a mapping from a orthogonality normed space \(A\) into a Banach Space \(B, \perp\) is orthogonality in the sense of Ratz with \(x \perp y\) for all \(x, y \in A\).
Keywords:
Hyers - Ulam - Rassias stability, J. M. Rassias mixed type product, sum of powers of norms stability, Orthogonally quadratic functional equation, Orthogonality space, Quadratic mappingMathematics Subject Classification:
39B55, 39B52, 39B82, 46H25- Pages: 84-92
- Date Published: 01-01-2016
- Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)
J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989. DOI: https://doi.org/10.1017/CBO9781139086578
P.W.Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86. DOI: https://doi.org/10.1007/BF02192660
S.Czerwik, On the stability of the quadratic mappings in normed spaces, Abh.Math.Sem.Univ Hamburg., 62 (1992), 59-64. DOI: https://doi.org/10.1007/BF02941618
F. Drljevic, On a functional which is quadratic on A-orthogonal vectors, Publ. Inst. Math. (Beograd) 54, $(1986), 63-71$.
M. Fochi, Functional equations in A-orthogonal vectors, Aequationes Math. 38, (1989), 28-40. DOI: https://doi.org/10.1007/BF01839491
P.Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211
R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. 43, (1995), 143-151.
D.H.Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci., U.S.A.,27 (1941) 222-224. DOI: https://doi.org/10.1073/pnas.27.4.222
Pl. Kannappan, Quadratic functional equation inner product spaces, Results Math. 27, No.3-4, (1995), 368-372. DOI: https://doi.org/10.1007/BF03322841
M. S. Moslehian, On the orthogonal stability of the Pexiderized quadratic equation, J. Differ. Equations Appl. (to appear).
M. S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation, J. Math. Anal. Appl. (to appear).
J.M.Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46 (1982) 126-130. DOI: https://doi.org/10.1016/0022-1236(82)90048-9
J.M.Rassias, On approximately of approximately linear mappings by linear mappings, Bull. Sc. Math, 108 (1984), 445-446.
Th.M.Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), $297-$ 300. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1
K.Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36 47.
K. Ravi R. Kodandan and P. Narasimman, Ulam stability of a quadratic Functional Equation, International Journal of Pure and Applied Mathematics 51(1) 2009, 87- 101.
F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53, (1983), 113-129. DOI: https://doi.org/10.1007/BF02924890
Gy. Szabo, Sesquilinear-orthogonally quadratic mappings, Aequationes Math. 40, (1990), $190-200$. DOI: https://doi.org/10.1007/BF02112295
S.M.Ulam, Problems in Modern Mathematics, Rend. Chap.VI,Wiley, New York, 1960.
F. Vajzovic, Uber das Funktional $H$ mit der Eigenschaft: $(x, y)=0 Rightarrow H(x+y)+H(x-y)=2 H(x)+2 H(y)$, Glasnik Mat. Ser. III 2 (22), (1967), 73-81.
- NA
Similar Articles
- A. Murugesan, R. Suganthi , Oscillation of first order neutral difference equations , Malaya Journal of Matematik: Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)
- A. Murugesan, K. Venkataramanan, Theorems on oscillatory and asymptotic behavior of second order nonlinear neutral difference equations , Malaya Journal of Matematik: Vol. 5 No. 04 (2017): Malaya Journal of Matematik (MJM)
- A. Murugesan, K. Ammamuthu, Conditions for oscillation and convergence of solutions to second order neutral delay difference equations with variable coefficients , Malaya Journal of Matematik: Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.