Some integral inequalities of fractional quantum type

Abstract

In this work, some of the most important fractional integral inequalities involving the Riemann Liouville are extended to quantum calculus on the specific time scale \(\mathbb{T}_{t_0}=\left\{t: t=t_0 q^n, n\right.\) a nonnegative integer \(\cup\)\(\{0\}\), where \(t_0 \in \mathbb{R}\) and \(0<q<1\).

Keywords:

Riemann-Liouville Fractional Integral, \(q\)-integral inequalities

Mathematics Subject Classification:

26A33, 26D10, 26D10
  • Pages: 93-99
  • Date Published: 01-01-2016
  • Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)

W. A. Al-Salam, Some fractional q-integrals and q-derivatives, Proceedings of the Edinburgh Mathematical Society. Series II, 15(1966), 135-140. DOI: https://doi.org/10.1017/S0013091500011469

F. M. Atc and P. W. Eloe, Fractional q-calculus on a time scale, Journal of Nonlinear Mathematical Physics, 14(3)(2007), 341-352. DOI: https://doi.org/10.2991/jnmp.2007.14.3.4

P. M. Rajković, S. D. Marinković and M. S. Stanković, A generalization of the concept of $q$-fractional integrals, Acta Mathematica Sinica (English Series), 25(10)(2009), 1635-1646. DOI: https://doi.org/10.1007/s10114-009-8253-x

H. Öğünmez and U. M. Özkan, Fractional Quantum Integral Inequalities, Hindawi Publishing Corporation, Journal of Inequalities and Applications, Volume 2011 (2011), Article ID 787939, 7 pages. DOI: https://doi.org/10.1155/2011/787939

W. Yang, Some new fractional quantum integral inequalities, Applied Mathematics Letters, 25(2012), 963969. DOI: https://doi.org/10.1016/j.aml.2011.11.005

B. Sroysang, A Study on a New Fractional Integral Inequality in Quantum Calculus, Adv. Studies Theor. Phys., 7(14)(2013), 689-692. DOI: https://doi.org/10.12988/astp.2013.3551

A. Anber, Z. Dahmani and B. Bendoukha, New Integral Inequalities of Feng Qi Type via RiemannLiouville Fractional Integration, Ser. Math. Inform., 27(2)(2012), 157-166.

Z. Dahmani, New inequalities in fractional integrals, International Journal of Nonlinear Science, 9(4)(2010), 493-497.

Z. Dahmani, Fractional integral inequalities for continuous random variables, Malaya J. Mat., 2(2)(2014), $172-179$. DOI: https://doi.org/10.26637/mjm202/010

B. Sroysang, A study on Hadamard fractional integral, International Journal of Mathematical Analysis, 7(3740)(2013), 1903-1906. DOI: https://doi.org/10.12988/ijma.2013.35115

J. Park, Fractional Hermite-Hadamard-like Type Inequalities for Convex Functions, International Journal of Mathematical Analysis, 9(29)(2015), 1415-1429. DOI: https://doi.org/10.12988/ijma.2015.5370

E. Set, İ. İşcan and S. Paça, Hermite Hadamard-Fejer type inequalities for quasi convex functions via fractional integrals, Malaya J. Mat., 3(3)(2015), 241-249. DOI: https://doi.org/10.26637/mjm303/003

S. Qaisar and S. Hussain, Generalization of integral inequalities of the type of Hermite- Hadamard through invexity, Malaya J. Mat., 3(1)(2015), 99-109. DOI: https://doi.org/10.26637/mjm301/010

  • NA

Metrics

Metrics Loading ...

Published

01-01-2016

How to Cite

Pshtiwan Othman Mohammed. “Some Integral Inequalities of Fractional Quantum Type”. Malaya Journal of Matematik, vol. 4, no. 01, Jan. 2016, pp. 93-99, doi:10.26637/mjm401/012.