Some new integral inequalities for \(k\)-fractional integrals
Downloads
DOI:
https://doi.org/10.26637/mjm401/013Abstract
The aim of the present paper is to investigate some new integral inequalities for \(k\)-fractional integrals. Moreover, special cases of the integral inequalities in this paper have been obtained by Tariboon et.al. in [22].
Keywords:
fractional integral inequalities, Grüss inequality, \(k\)-Reimann-Liouville calculusMathematics Subject Classification:
26A33, 26D10, 26D15- Pages: 100-110
- Date Published: 01-01-2016
- Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)
G.A. Anastassiou, M.R. Hooshmandasl, A. Ghasemi, F. Moftakharzadeh, Montgomery identities for fractional integrals and related fractional inequalities, J. Inequal. Pure Appl. Math. 10 (4) (2009), 1-6.
G.A. Anastassiou, Fractional Differentiation Inequalities, Springer Science, LLC, 2009. DOI: https://doi.org/10.1007/978-0-387-98128-4
S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math. 10 (3) (2009), 1-12.
Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci. 9 (4) (2010), 493-497.
Z. Dahmani, L. Tabharit, and S. Taf, New generalizations of Gruss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl. 2 (3) (2010), 93-99.
R. Diaz, and E. Pariguan, On hypergeometric functions and Pochhammer $k$-symbol, Divulg. Mat. 15 (2007), 179-192.
S.S. Dragomir, A generalization of Gruss inequality in inner product spaces and applications, J. Math. Anal. Appl. 237 (1999), 74-82. DOI: https://doi.org/10.1006/jmaa.1999.6452
S.S. Dragomir, Some integral inequalities of Grüss type, Indian J. Pure Appl. Math. 31 (4) 2002, 397-415.
N. Elezovic, L.J. Marangunic and J. Pecaric, Some improvements of Gruss type inequality, J.Math. Ineq. 1 (2007), 425-436. DOI: https://doi.org/10.7153/jmi-01-36
R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien, 1997. DOI: https://doi.org/10.1007/978-3-7091-2664-6_5
G. Grüss, Über das Maximum des absoluten Betrages von $frac{1}{b-a} int_a^b f(t) g(t) d t-frac{1}{(b-a)^2} int_a^b f(t) d t$ $cdot int_a^b g(t) d t$, Math. Z. $39(11)(1935), 215-226$. DOI: https://doi.org/10.1007/BF01201355
J. Hadamard, Essai sur l'etude des fonctions donnees par leur developpement de Taylor, J. Pure Appl. Math. $4(8) 1892,101-186$.
Latif, M. A. and Hussain, S., New inequalities of Ostrowski type for co-ordineted convex functions via fractional integrals, J. Fract. Calc Appl. 2 (9) (2012), 1-15.
X. Li, R. N. Mohapatra, R. S. Rodriguez, Gruss-type inequalities, J. Math. Anal. Appl. 267 (2002), 434-443. DOI: https://doi.org/10.1006/jmaa.2001.7565
U.N. Katugampola, New Approach Generalized Fractional Integral, Appl. Math. Comput. 218 (2011), 860865. DOI: https://doi.org/10.1016/j.amc.2011.03.062
K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
S. Mubeen, and G. M. Habibullah, k-Fractional integrals and application, Internat. J. Contemporary Math. Sci. 7 (2012), 89-94.
B.G. Pachpatte, On multidimensional Grüss type inequalities, J. Inequal. Pure Appl. Math. 3 (2) Art. 27, 2002.
M.Z. Sarikaya, E. Set, H.Yaldiz, and N.Basak, Hermite -Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 57 (2013), 2403-2407. DOI: https://doi.org/10.1016/j.mcm.2011.12.048
M. Z. Sarikaya and H. Yaldiz, On weighted Montogomery identities for Riemann-Liouville fractional integrals, Konuralp Journal of Mathematics, 1 (1) (2013), 48-53.
M.Z. Sarikaya and A. Karaca, On the $k$-Riemann-Liouville fractional integral and applications, Internati. J. Stat. Math. 1 (2) (2014), 33-43. DOI: https://doi.org/10.3724/SP.J.1087.2013.00035
J. Tariboon, S.K. Ntouyas and W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities, Internat. J. Math. Math. Sci. Volume 2014, Article ID 869434, 6 pages. DOI: https://doi.org/10.1155/2014/869434
M. Tunc, On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat 27 (4) (2013), 559-565. DOI: https://doi.org/10.2298/FIL1304559T
G. Romero, L. Luque, G. Dorrego and R. Cerutti, On the $k$-Riemann-Liouville Fractional Derivative, Int. J. Contemp. Math. Sci. 8 (1) (2013), 41-51. DOI: https://doi.org/10.12988/ijcms.2013.13004
- NA
Similar Articles
- K. Ravi, S. Suresh , Orthogonal stability of the new generalized quadratic functional equation , Malaya Journal of Matematik: Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)
- K. Ravi, S.Suresh , Orthogonal stability of the new generalized quadratic functional equation , Malaya Journal of Matematik: Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.