Two fluid axially symmetric cosmological models in \(f(R,T)\) theory of gravitation
Downloads
DOI:
https://doi.org/10.26637/mjm401/014Abstract
In this paper we have investigated two fluid axially symmetric cosmological models in \(f(R, T)\) theory of gravitation. To get the deterministic model, we have assumed a supplementary condition \(H_3=k H_1\), where \(H_1\) and \(H_3\) are Hubble parameters and \(k\) is constant. Two-fluid model in \(f(R, T)\) theory of gravitation, one fluid represents the matter content of the universe and another fluid is chosen to model the cosmic microwave background radiation. Some geometric aspects of the model are also discussed.
Keywords:
Two fluid, Axially symmetric, \(f( R,T )\) theoryMathematics Subject Classification:
35Q35- Pages: 111-118
- Date Published: 01-01-2016
- Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)
S.Nojiri, S.D. Odintsov, (2003) arXiv:hep-th/0307288 .
S.Nojiri, S. D.Odintsov, (2006)Phys. Rev. D 74, 086. DOI: https://doi.org/10.1103/PhysRevD.74.086009
S.M Carroll, et al. (2004) Phys. Rev. D 70, 043528. DOI: https://doi.org/10.1103/PhysRevD.70.123525
B.C.Paul, P.S Debnath, S. Ghose (2009)Phys. Rev. D 79, 083534. DOI: https://doi.org/10.1103/PhysRevD.79.083534
M. F. Shamir (2010) Astrophys. Space Sci. 330, 183. DOI: https://doi.org/10.1007/s10509-010-0371-5
Ali Shojai , Fatimah Shojai (2012) Gen. Rele. Gravity 44, 211-223. DOI: https://doi.org/10.1007/s10714-011-1271-x
T.Harko,F.S.N Lobo, S. D.Nojiri (2011) Odintsov arXiv:1104.2669 [gr-qc].
D. R. K. Reddy, R. Santikumar R. L.Naidu (2012) Astrophys. Space Sci. 342, 249. DOI: https://doi.org/10.1007/s10509-012-1158-7
V.U.M.Rao, D.Neelima (2013)Astrophys Space Sci., DOI 10.1007/s10509-013-1406-5 .
V.U.M.Rao, D.Neelima (2013)Eur. Phys. J. Plus., 128, 35. DOI: https://doi.org/10.1140/epjp/i2013-13035-y
R.Chaubey, A.K Shukla, (2013)Astrophys Space Sci., 343,415. DOI: https://doi.org/10.1007/s10509-012-1204-5
D. R. K. Reddy , R. Santhi Kumar (2013) Global Journal of Science Frontier Research Physics and Space Sciences ,13, 2 Version 1.0.
R.L.Naidu, K. D. Naidu, T. Ramprasad , D.R.K.Reddy (2013) Global Journal of Science Frontier Research Physics and Space Science ,13, 3 Version 1.0 .
Shri Ram, Priyanka, M. K. Singh (2013) Pramana journal of physics 81, 1, pp. 67-74. DOI: https://doi.org/10.1007/s12043-013-0547-y
D. D. Pawar, Y. S. Solanke(2014),Turkish J. of Phys.doi:10.3906/ z-1404-1
D. D. Pawar, P. K. Agrawal (2015),Prespacetime Journal, Volume 6, Issue 3, pp. 218-225.
C. B. G. McIntosh (1972) AU8t. J. PhY8., 1972, 25, 75-82. DOI: https://doi.org/10.1063/1.3070977
A.A.Coley , K. Dunn K. (1990), Astrophys. J.26, 348. DOI: https://doi.org/10.1086/168209
D.N. Pant, S.Oli (2002) Astrophys. Space Sci. 281, 623. DOI: https://doi.org/10.1023/A:1015898219523
S. Oli (2008) Astrophys. Space Sci., 89, 314. DOI: https://doi.org/10.1007/s10509-008-9744-4
A.K. Verma (2009) Astrophys Space Sci., 321, 73-77. DOI: https://doi.org/10.1007/s10509-009-0011-0
D. D. Pawar , V. J. Dagwal. (2013) Int. J. of Scientific and Engineering Research, 4, 689-693.
M.K.Singh, M.K.Verma, S. Ram (2013) Int. J. Theor. Phys. 52, 227 .
G.C. Samanta , S. Debata (2013) Int J Theor Phys 52:3999-4007. DOI: https://doi.org/10.1007/s10773-013-1713-1
R. Venkateswarlu (2013) Prespacetime Journal, 4 , 8 pp. 801-806.
M.K. Singh , M.K. Verma, Shri Ram (2013) Int J Theor Phys,52:227-232. DOI: https://doi.org/10.1007/s10773-012-1323-3
D. D. Pawar, V. J. Dagwal. (2014) Int. J. Theor. Phys, 53, 7, 2441-2450. DOI: https://doi.org/10.1007/s10773-014-2043-7
D. D. Pawar, V. J. Dagwal. (2014) Int. J. Theor. Phys, DOI 10.1007/s10773-014-2396-y.
S.Bhattacharaya,T.M. Karade, (1993) Astrophys. Space Sci. 202, 69 . DOI: https://doi.org/10.1007/BF00626917
D.R.K.Reddy, M.V.S. Rao, (2006), ASS, 305, 183. DOI: https://doi.org/10.1007/s10509-006-9062-7
D.R.K Reddy,R.L.Naidu,K.S.Adhav (2007) Astrophys. Space Sci.307-365. DOI: https://doi.org/10.1007/s10509-006-9282-x
V. U. M. Rao and K. V. S. Sireesha,(2012) The African Review of Physics, vol. 7. Article ID 0042.
P.K. Sahoo, B. Mishra, (2013) International Journal of Pure and Applied Mathematics , 82 , 1 , 87-94.
Nawsad Ali (2013) J. Astrophys. Astr. 34, 259-271. DOI: https://doi.org/10.1007/s12036-013-9172-x
- NA
Similar Articles
- Yuji Liu, Shimin Li, Periodic boundary value problems for singular fractional differential equations with impulse effects , Malaya Journal of Matematik: Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)
- Muthaiah Subramanian, Sargunam Muthu, Murugesan Manigandan, Thangaraj Nandha Gopal, On generalized Caputo fractional differential equations and inclusions with non-local generalized fractional integral boundary conditions , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
- Zoubir Dahmani, Fractional integral inequalities for continuous random variables , Malaya Journal of Matematik: Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)
- Hüseyin YILDIRIM, Zeynep KIRTAY , Ostrowski inequality for generalized fractional integral and related inequalities , Malaya Journal of Matematik: Vol. 2 No. 03 (2014): Malaya Journal of Matematik (MJM)
- Amira ABDELNEBI, Zoubir DAHMANI, Mehmet Zeki SARIKAYA, New classes of fractional integral inequalities and some recent results on random variables , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
- Said Abbas, Mouffak Benchohra, Existence and stability for fractional order integral equations with multiple time delay in Fr´echet spaces , Malaya Journal of Matematik: Vol. 1 No. 1 (2012): Inaugural Issue :: Malaya Journal of Matematik (MJM)
- Mohamed DOUBBI BOUNOUA, Zoubir DAHMANI, Zakaria BEKKOUCHE, Further results and applications on continuous random variables , Malaya Journal of Matematik: Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
- Kamel Brahim, Sabrina Taf, On some fractional \(q\)-Integral inequalities , Malaya Journal of Matematik: Vol. 1 No. 03 (2013): Malaya Journal of Matematik (MJM)
- Zoubir DAHMANI, Amina KHAMELI , Karima FREHA , Fractional integral Chebyshev inequality without synchronous functions condition , Malaya Journal of Matematik: Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
- Abdullah AKKURT, Hüseyin YILDIRIM , Hermite-Hadamard type inequalities for \(\left(n, m, h_1, h_2, \varphi\right)\)-convex functions via fractional integrals , Malaya Journal of Matematik: Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.