On the stability of \(\alpha\)−Cauchy-Jensen type functional equation in Banach algebras

Downloads

DOI:

https://doi.org/10.26637/mjm401/019

Abstract

Using fixed point methods, we prove the generalized Hyers-Ulam stability of homomorphisms in Banach algebras for the following \(\alpha\)-Cauchy-Jensen functional equation:
$$
f\left(\frac{x+y}{\alpha}+z\right)+f\left(\frac{x-y}{\alpha}+z\right)=\frac{2}{\alpha} f(x)+2 f(z),
$$
where \(\alpha \in \mathbb{N}_{\geq 2}\).

Keywords:

Cauchy-Jensentypefunctionalequation, fixedpoint, generalized Hyers-Ulam stability, homomorphism in Banach algebra

Mathematics Subject Classification:

39A10, 47H10, 39B82
  • Iz-iddine EL-Fassi Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco.
  • Samir Kabbaj Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco.
  • Pages: 169-177
  • Date Published: 01-01-2016
  • Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2, pp. 64-66, $(1950)$ DOI: https://doi.org/10.2969/jmsj/00210064

C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Mathematica Sinica, vol. 22, no. 6, pp. 1789-1796, 2006. DOI: https://doi.org/10.1007/s10114-005-0697-z

L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, Journal of Inequalities in Pure and Applied Mathematics, vol. 4, no. 1, article 4, p. 7, 2003.

L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Mathematische Berichte, 346, pp. 43-52, (2004).

J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bul. Amer. Math. Soc., vol. 74, pp. 305- 309, 1968. DOI: https://doi.org/10.1090/S0002-9904-1968-11933-0

P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., vol. 184, no. 3, pp. 431-436, 1994. DOI: https://doi.org/10.1006/jmaa.1994.1211

D. H. Hyers, On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, vol. 27, no. 4, pp. 222-224, 1941. DOI: https://doi.org/10.1073/pnas.27.4.222

C.-G. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., vol. 275, no. 2, pp. 711-720, 2002. DOI: https://doi.org/10.1016/S0022-247X(02)00386-4

C.-G. Park, Modified Trif's functional equations in Banach modules over a $C^*-$ algebra and approximate algebra homomorphisms, J. Math. Anal. Appl., vol. 278, no. 1, pp. 93-108, 2003 DOI: https://doi.org/10.1016/S0022-247X(02)00573-5

MC.-G. Park, On an approximate automorphism on a $C^*$-algebra, Proceedings of the American Mathematical Society, vol. 132, no. 6, pp. 1739-1745, 2004. DOI: https://doi.org/10.1090/S0002-9939-03-07252-6

C. Park and J. Hou, Homomorphisms between $C^*-$-algebras associated with the Trif functional equation and linear derivations on $C^*$-algebras, Journal of the Korean Mathematical Society, vol. 41, no. 3, pp. 461$477,2004$. DOI: https://doi.org/10.4134/JKMS.2004.41.3.461

C.-G. Park, Lie *-homomorphisms between Lie $C^*$-algebras and Lie *-derivations on Lie $C^*-$ algebras, J. Math. Anal. Appl., vol. 293, no. 2, pp. 419-434, 2004. DOI: https://doi.org/10.1016/j.jmaa.2003.10.051

C.-G. Park, Homomorphisms between Lie JC ${ }^*$-algebras and Cauchy-Rassias stability of Lie JC* -algebra derivations, Journal of Lie Theory, vol. 15, no. 2, pp. 393-414, 2005.

C.-G. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc., vol. 36, no. 1, pp. 79-97, 2005. DOI: https://doi.org/10.1007/s00574-005-0029-z

C.-G. Park, Hyers-Ulam-Rassias stability of a generalized Euler-Lagrange type additive mapping and isomorphisms between $C^*$-algebras, Bull. Bel. Math. Soc., Si-mon Stevin, vol. 13, no. 4, pp. 619-632, 2006. DOI: https://doi.org/10.36045/bbms/1168957339

C. Park, Hyers-Ulam-Rassias stability of a generalized Apollonius-Jensen type additive mapping and isomorphisms between $C^*$-algebras, to appear in Mathematische Nachrichten.

C. Park, Fixed Points and Hyers-Ulam-Rassias Stability of Cauchy-Jensen Functional Equations in Banach Algebras, Fixed Point Theory and Applications, Volume 2007, Article ID 50175, 15 pages, 2007. DOI: https://doi.org/10.1155/2007/50175

Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297-300, 1978. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1

J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Journal of Functional Analysis, vol. 46, no. 1, pp. 126-130, 1982. DOI: https://doi.org/10.1016/0022-1236(82)90048-9

J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sc. Math., vol. 108 , no. 4, pp. 445-446, 1984.

J. M. Rassias, Solution of a problem of Ulam, J. Appro. Theory, vol. 57, no. 3, pp. 268-273, 1989. DOI: https://doi.org/10.1016/0021-9045(89)90041-5

Th. M. Rassias, Problem 16; 2; Report of the 27th International Symposium on Functional Equations, Aequat. Math., vol. 39, no. 2-3, pp. 292-293, 309, 1990.

Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., vol. 246, no. 2, pp. 352-378, 2000. DOI: https://doi.org/10.1006/jmaa.2000.6788

Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., vol. 251, no. 1 , pp. 264-284, 2000. DOI: https://doi.org/10.1006/jmaa.2000.7046

S.M.Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience, New York, NY, USA, 1960.

  • NA

Metrics

Metrics Loading ...

Published

01-01-2016

How to Cite

Iz-iddine EL-Fassi, and Samir Kabbaj. “On the Stability of \(\alpha\)−Cauchy-Jensen Type Functional Equation in Banach Algebras”. Malaya Journal of Matematik, vol. 4, no. 01, Jan. 2016, pp. 169-77, doi:10.26637/mjm401/019.