Compactons solutions for the fractional nonlinear dispersive \(K(2,2)\) equations by the homotopy perturbation method

Downloads

DOI:

https://doi.org/10.26637/mjm401/020

Abstract

In this paper, the homotopy perturbation is successively used to obtain approximate analytical solutions of the nonlinear dispersive \(K(2,2)\) equation with time and space derivative. Comparison between the numerical and the exact solutions revealed that HPM is an alternative analytical method for solving fractional differential equations.

Keywords:

Caputo fractional derivative, homotopy perturbation method, fractional differential equations, \(K(2,2)\) equation

Mathematics Subject Classification:

35R11, 35Q53, 35A15, 47H15, 65P05, 26A33
  • D. Ziane Laboratory of Mathematics and its Applications (LAMAP), University of Oran1, P.O. Box 1524, Oran, 31000, Algeria.
  • K. Belghaba Laboratory of Mathematics and its Applications (LAMAP), University of Oran1, P.O. Box 1524, Oran, 31000, Algeria.
  • M. Hamdi Cherif Laboratory of Mathematics and its Applications (LAMAP), University of Oran1, P.O. Box 1524, Oran, 31000, Algeria.
  • Pages: 178-185
  • Date Published: 01-01-2016
  • Vol. 4 No. 01 (2016): Malaya Journal of Matematik (MJM)

G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston, 1994. DOI: https://doi.org/10.1007/978-94-015-8289-6

A. Bouhassoun and M. Zellal, Variational Homotopy Perturbation Method for Solving the K(2,2) Equations, Int. J. of Appl. Math. Res., 2(2)(2013), 338-344. DOI: https://doi.org/10.14419/ijamr.v2i2.899

J. Biazar and H. Ghazvini, Exact solutions for non-linear schrödinger equations by He's homotopy perturbation method, Phys. Lett., 366(2007), 79-84. DOI: https://doi.org/10.1016/j.physleta.2007.01.060

J. Biazar, R. Ansari, K. Hosseini, and P. Gholamin, Solution of the linear and non-linear schrödinger equations using homotopy perturbation and Adomian Decomposition methods, Int. Math. Forum., 3(38)(2008), 1891-1897.

J. Biazar and H. Ghazvini, Convergence of the homotopy perturbation method for partial differential equations, Nonlinear Analysis: Real World Applications., 10(2009), 2633-2640. DOI: https://doi.org/10.1016/j.nonrwa.2008.07.002

J. Biazar and H. Aminikhah, Study of convergence of homotopy perturbation method for systems of partial differential equations, Comput. Math. Appli., 58(2009), 2221-2230. DOI: https://doi.org/10.1016/j.camwa.2009.03.030

K. Diethelm, The Analysis Fractional Differential Equations, Springer-Verlag Berlin Heidelberg, 2010. DOI: https://doi.org/10.1007/978-3-642-14574-2

J. de Frutos and M. A Lopez-Marcus and L.M Sanz-Serna, A finite difference sheme for the K(2,2) compacton equation, J. Comp. Phys., 120(1995), 248-254. DOI: https://doi.org/10.1006/jcph.1995.1161

B. Ganjavi, H. Mohammadi, D. D. Ganji, and A. Barar, Homotopy perturbation perturbation and variational iteration method for solving Zakharov-Kuznetsov equation, American J. of Appl. Sci., 5(7)(2008), 811-817. DOI: https://doi.org/10.3844/ajassp.2008.811.817

J. H. He, Homotopy perturbation technique, Comput. Meth. Appl. Eng., 178(3-4)(1999), 257-262. DOI: https://doi.org/10.1016/S0045-7825(99)00018-3

J. H. He, Variational iteration method for a kind of non-linear analytical technique: some examples, Int. J. of Non-Linear Mech., 34(1999), 699-708. DOI: https://doi.org/10.1016/S0020-7462(98)00048-1

J. H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Int. J. of Non-Linear Mechanics., 35(2000), 37-43. DOI: https://doi.org/10.1016/S0020-7462(98)00085-7

J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135(2003), 73-79. DOI: https://doi.org/10.1016/S0096-3003(01)00312-5

J. H. He and X. H. Wu, Construction of solitary solution and compacton-like solution by variational iteration method, Chaos, Solitons and Fractals., 29(2006), 108-113. DOI: https://doi.org/10.1016/j.chaos.2005.10.100

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993.

S. Momani and Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett A., 365(2007), 345-350. DOI: https://doi.org/10.1016/j.physleta.2007.01.046

I. Podlubny, Fractional Differential Equations,Academic Press, New York, 1999.

P. Rosenau and J. M. Hyman, Compactons: solitons with finite wavelengths, Phys. Rev. Lett., 70(1993), 564-567. DOI: https://doi.org/10.1103/PhysRevLett.70.564

A. Y1ldirım, An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method, Int. J. Nonlinear Sci. Numer. Simul., 10(2009), 445-51. DOI: https://doi.org/10.1515/IJNSNS.2009.10.4.445

  • NA

Metrics

Metrics Loading ...

Published

01-01-2016

How to Cite

D. Ziane, K. Belghaba, and M. Hamdi Cherif. “Compactons Solutions for the Fractional Nonlinear Dispersive \(K(2,2)\) Equations by the Homotopy Perturbation Method”. Malaya Journal of Matematik, vol. 4, no. 01, Jan. 2016, pp. 178-85, doi:10.26637/mjm401/020.