Hyers-Ulam-Rassias stability of nth order linear ordinary differential equations with initial conditions

Downloads

DOI:

https://doi.org/10.26637/mjm402/005

Abstract

In this paper, we investigate the stability of nth order linear ordinary differential non-homogeneous equation with initial conditions in the Hyers-Ulam-Rassias sense.

Keywords:

Differential equation, Differential inequality, Hyers-Ulam-Rassias stability, Initial Value Problem, Integral Equation

Mathematics Subject Classification:

34A30, 34A40, 45D05
  • K. Ravi Department of Mathematics, Sacred Heart College, Tirupattur - 635601, Tamilnadu, India.
  • R. Murali Department of Mathematics, Sacred Heart College, Tirupattur - 635601, Tamilnadu, India.
  • A. Antony Raj Department of Mathematics, Sacred Heart College, Tirupattur - 635601, Tamilnadu, India.
  • Pages: 224-229
  • Date Published: 01-04-2016
  • Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)

C. Co.rduneanu, Principles of Differential and Integral Equations, Chelsea Publ. Company, New York, $(1971)$

S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, Singapore, (2002). DOI: https://doi.org/10.1142/4875

P. Gavruta, S.M. Jung, Y. Li, Hyers-Ulam Stability for Second order linear differential equations with Boundary Conditions, Elect. J. of Diff. Eq. (2011), 1-5.

D.H. Hyers, On the stability of the linear functional equation,Proc. Natl. Acad. Sci. USA 27 (1941), 222-224. DOI: https://doi.org/10.1073/pnas.27.4.222

D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston (1998). DOI: https://doi.org/10.1007/978-1-4612-1790-9

A. Javadian, E. Sorouri, G.H. Kim and M. Eshaghi Gordji, Generalized Hyers- Ulam stability of the second order linear differential equations, Journal of Applied Mathematics, (2011), 10 pages. DOI: https://doi.org/10.1155/2011/813137

Jinghao Huang, Qusuay H. Alqifiary and Yongjin Li, On the generalized superstability of nth order linear differential equations with initial conditions, De L'Institut Mathematique Publications, Nouvelle serie, tome $98(2015), 243-249$. DOI: https://doi.org/10.2298/PIM150129019H

Y. Li and Yan Shen, Hyers- Ulam Stability of Nonhomogeneous Linear Differential Equations of Second Order, Int. J. of Math and Math Sciences, (2009), Article ID, 7 pages. DOI: https://doi.org/10.1155/2009/576852

Y. Li, Hyers-Ulam Stability of Linear Differential Equations $y^{prime prime}=lambda^2 y$, Thai J. of Math. 8 (2010), 215-219.

Maher Nazmi Qarawani, Hyers-Ulam stability of linear and nonlinear differential equations of second order, International Journal of Applied Mathematical Research, 1 (4), (2012), 422-432. DOI: https://doi.org/10.14419/ijamr.v1i4.160

T. Miura, S. Miyajima, S.E. Takahasi, A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl. 286, (2003), 136-146. DOI: https://doi.org/10.1016/S0022-247X(03)00458-X

M.I. Modebei, O.O. Olaiya, I. Otaide, Generalized Hyers-Ulam Stability of second order linear ordinary differential equation with initial conditions, Adv. Inequal. Appl. (2014), 1-7.

Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (1978), 297-300. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1

S.M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17, (2004), $1135-1140$. DOI: https://doi.org/10.1016/j.aml.2003.11.004

S.M. Jung, Hyers-Ulam stability of linear differential equations of first order(II), Appl. Math. Lett. 19, (2006), 854-858. DOI: https://doi.org/10.1016/j.aml.2005.11.004

S.M. Jung, Hyers-Ulam stability of linear differential equations of first order(III), Appl. Math. Lett. 311, (2005), 139-146. DOI: https://doi.org/10.1016/j.jmaa.2005.02.025

Soon Mo Jung, Hyers Ulam stability of a system of first order linear differential equations with constant coefficient, J. Math. Anal. Appl. 320 (2006), 549-561. DOI: https://doi.org/10.1016/j.jmaa.2005.07.032

S.M. Ulam, A collection of Mathematical Problems, Interscience, New York, (1960).

G. Wang, M. Zhou and L. Sun, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 21, (2008), 1024-1028. DOI: https://doi.org/10.1016/j.aml.2007.10.020

  • NA

Metrics

Metrics Loading ...

Published

01-04-2016

How to Cite

K. Ravi, R. Murali, and A. Antony Raj. “Hyers-Ulam-Rassias Stability of Nth Order Linear Ordinary Differential Equations With Initial Conditions”. Malaya Journal of Matematik, vol. 4, no. 02, Apr. 2016, pp. 224-9, doi:10.26637/mjm402/005.