Hyers-Ulam-Rassias stability of nth order linear ordinary differential equations with initial conditions
Downloads
DOI:
https://doi.org/10.26637/mjm402/005Abstract
In this paper, we investigate the stability of nth order linear ordinary differential non-homogeneous equation with initial conditions in the Hyers-Ulam-Rassias sense.
Keywords:
Differential equation, Differential inequality, Hyers-Ulam-Rassias stability, Initial Value Problem, Integral EquationMathematics Subject Classification:
34A30, 34A40, 45D05- Pages: 224-229
- Date Published: 01-04-2016
- Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)
C. Co.rduneanu, Principles of Differential and Integral Equations, Chelsea Publ. Company, New York, $(1971)$
S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, Singapore, (2002). DOI: https://doi.org/10.1142/4875
P. Gavruta, S.M. Jung, Y. Li, Hyers-Ulam Stability for Second order linear differential equations with Boundary Conditions, Elect. J. of Diff. Eq. (2011), 1-5.
D.H. Hyers, On the stability of the linear functional equation,Proc. Natl. Acad. Sci. USA 27 (1941), 222-224. DOI: https://doi.org/10.1073/pnas.27.4.222
D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston (1998). DOI: https://doi.org/10.1007/978-1-4612-1790-9
A. Javadian, E. Sorouri, G.H. Kim and M. Eshaghi Gordji, Generalized Hyers- Ulam stability of the second order linear differential equations, Journal of Applied Mathematics, (2011), 10 pages. DOI: https://doi.org/10.1155/2011/813137
Jinghao Huang, Qusuay H. Alqifiary and Yongjin Li, On the generalized superstability of nth order linear differential equations with initial conditions, De L'Institut Mathematique Publications, Nouvelle serie, tome $98(2015), 243-249$. DOI: https://doi.org/10.2298/PIM150129019H
Y. Li and Yan Shen, Hyers- Ulam Stability of Nonhomogeneous Linear Differential Equations of Second Order, Int. J. of Math and Math Sciences, (2009), Article ID, 7 pages. DOI: https://doi.org/10.1155/2009/576852
Y. Li, Hyers-Ulam Stability of Linear Differential Equations $y^{prime prime}=lambda^2 y$, Thai J. of Math. 8 (2010), 215-219.
Maher Nazmi Qarawani, Hyers-Ulam stability of linear and nonlinear differential equations of second order, International Journal of Applied Mathematical Research, 1 (4), (2012), 422-432. DOI: https://doi.org/10.14419/ijamr.v1i4.160
T. Miura, S. Miyajima, S.E. Takahasi, A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl. 286, (2003), 136-146. DOI: https://doi.org/10.1016/S0022-247X(03)00458-X
M.I. Modebei, O.O. Olaiya, I. Otaide, Generalized Hyers-Ulam Stability of second order linear ordinary differential equation with initial conditions, Adv. Inequal. Appl. (2014), 1-7.
Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (1978), 297-300. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1
S.M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17, (2004), $1135-1140$. DOI: https://doi.org/10.1016/j.aml.2003.11.004
S.M. Jung, Hyers-Ulam stability of linear differential equations of first order(II), Appl. Math. Lett. 19, (2006), 854-858. DOI: https://doi.org/10.1016/j.aml.2005.11.004
S.M. Jung, Hyers-Ulam stability of linear differential equations of first order(III), Appl. Math. Lett. 311, (2005), 139-146. DOI: https://doi.org/10.1016/j.jmaa.2005.02.025
Soon Mo Jung, Hyers Ulam stability of a system of first order linear differential equations with constant coefficient, J. Math. Anal. Appl. 320 (2006), 549-561. DOI: https://doi.org/10.1016/j.jmaa.2005.07.032
S.M. Ulam, A collection of Mathematical Problems, Interscience, New York, (1960).
G. Wang, M. Zhou and L. Sun, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 21, (2008), 1024-1028. DOI: https://doi.org/10.1016/j.aml.2007.10.020
- NA
Similar Articles
- P. Jeyanthi, T. Saratha Devi, Edge pair sum labeling of butterfly graph with shell order , Malaya Journal of Matematik: Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.