Hermite-Hadamard type inequalities for \(\left(n, m, h_1, h_2, \varphi\right)\)-convex functions via fractional integrals

Downloads

DOI:

https://doi.org/10.26637/mjm402/006

Abstract

In this paper, we obtain new generalizations for Hermite-Hadamard inequality by using Riemann-Liouville fractional integral and new type convex functions.

Keywords:

Integral inequalities, Riemann-Liouville Fractional integral, Hermite-Hadamard Inequality

Mathematics Subject Classification:

26A33, 26D15, 26A51 , 26A42
  • Abdullah AKKURT Department of Mathematics, Faculty of Science and Arts, University of Kahramanmara¸ s Süt¸ cü ˙ Imam, 46100, Kahramanmara¸ s, Turkey. https://orcid.org/0000-0001-5644-1276
  • Hüseyin YILDIRIM Department of Mathematics, Faculty of Science and Arts, University of Kahramanmara¸ s Süt¸ cü ˙ Imam, 46100, Kahramanmara¸ s, Turkey.
  • Pages: 230-237
  • Date Published: 01-04-2016
  • Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)

A. Akkurt, H. Yıldırım,. "Genelleştirilmiş Fractional İntegraller İçin Feng Qi Tipli İntegral Eşitsizlikleri Üzerine." Fen Bilimleri Dergisi 1.2 (2014).

A. Akkurt, Z. Kaçar, H. Yildirim, "Generalized Fractional Integral Inequalities for Continuous Random Variables," Journal of Probability and Statistics, vol. 2015, Article ID 958980, 7 pages, 2015. doi:10.1155/2015/958980 DOI: https://doi.org/10.1155/2015/958980

A. G. Azpeitia, Convex functions and the Hadamard inequality, Rev. Colombiana Math., 28 (1994), 7-12.

S. Balgecti, $(beta, alpha, n, m)$ Convexity and Fractional Integral Inequalities, Mustafa Kemal University Institute for Graduate Studies in Science and Technology MSc Thesis, (2015).

D.-P. Shi, B.-Y. Xi, and F. Qi, “Hermite-Hadamard Type Inequalities for $left(m, h_1, h_2right)$-Convex Functions Via Riemann-Liouville Fractional Integrals." Turkish Journal of Analysis and Number Theory, vol. 2, no. 1 (2014): 23-28. doi: 10.12691/tjant-2-1-6. DOI: https://doi.org/10.12691/tjant-2-1-6

G. Maksa, Z. S. Páles, The equality case in some recent convexity inequalities, Opuscula Math., 31 (2011), no. 2, 269-277. DOI: https://doi.org/10.7494/OpMath.2011.31.2.269

H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Mathematicae 48 (1994) 100- I 11 DOI: https://doi.org/10.1007/BF01837981

H. Yıldırım, Z. Kırtay, Ostrowski Inequality for Generalized Fractional Integral and Related Inequalities, Malaya Journal of Mathematic, 2014.

İ. İscan, New estimates on generalization of some integral inequalities for $s$-convex functions and their applications, Int. J. Pure Appl. Math., 86(4) (2013) 727-746. DOI: https://doi.org/10.12732/ijpam.v86i4.11

M. Z. Sarikaya, A. Sağlam and H. Yıldırım, On some Hadamard-type inequalities for h-convex functions, J. Math. Ineq., 2(3)(2008), 335-341. DOI: https://doi.org/10.7153/jmi-02-30

M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. 57 (2013), 2403-2407. DOI: https://doi.org/10.1016/j.mcm.2011.12.048

M. Z. Sarikaya and N. Aktan, On the generalization of some integral inequalities and their applications, Mathematical and Computer Modelling, 54, 2175-2182. DOI: https://doi.org/10.1016/j.mcm.2011.05.026

M. Z. Sarikaya, E. Set and M. E. Ozdemir, On some integral inequalities for twice differantiable mappings, Studia Univ. Babes-Bolyai Mathematica, 59(2014), No. 1, pp:11-24.

M. Z. Sarikaya and H. Yaldiz, On Hermite-Hadamard Type Inequalities for $varphi$-convex Functions via Fractional Integrals, Malaysian Journal of Mathematical Sciences 9(2): 243-258 (2015). DOI: https://doi.org/10.12988/ams.2015.56425

M. K. Bakula and J. Pečarić, Note on some Hadamard-type inequalities, Journal of Inequalities in Pure and Applied Mathematics, vol. 5, no. 3, article 74, 2004.

M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Hermite-Hadamard type for functions whose second derivates absolute values are quasi-convex, RGMIA Res. Rep. Coll., 12 (2009) Supplement, Article 14.

S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives-Theory and Applications, Gordon and Breach, Linghorne, 1993.

S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.

Tunç, M., Balgeçti S., 2015. $(n, m)$-convexity and its integral inequalities, submitted.

V. G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Clujnapoca, 1993. (Romania).

  • NA

Metrics

Metrics Loading ...

Published

01-04-2016

How to Cite

Abdullah AKKURT, and Hüseyin YILDIRIM. “Hermite-Hadamard Type Inequalities for \(\left(n, M, h_1, h_2, \varphi\right)\)-Convex Functions via Fractional Integrals”. Malaya Journal of Matematik, vol. 4, no. 02, Apr. 2016, pp. 230-7, doi:10.26637/mjm402/006.