Inverse Fourier transform for bi-complex variables

Downloads

DOI:

https://doi.org/10.26637/mjm402/010

Abstract

In this paper we examine the existence of bicomplexified inverse Fourier transform as an extension of its complexified inverse version within the region of convergence of bicomplex Fourier transform. In this paper we use the idempotent representation of bicomplex-valued functions as projections on the auxiliary complex spaces of the components of bicomplex numbers along two orthogonal,idempotent hyperbolic directions.

Keywords:

Bicomplex numbers, Fourier transform, Inverse Fourier transform

Mathematics Subject Classification:

42A38, 44A10
  • Pages: 263-270
  • Date Published: 01-04-2016
  • Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)

S. Bochner and K. Chandrasekharan, Fourier transforms, Annals of Mathematics Studies, Princeton University Press, Princeton 19 (1949). DOI: https://doi.org/10.1515/9781400882243

A.Banerjee, S.K.Datta and Md. A.Hoque, Fourier transform for functions of bicomplex variables, Asian journal of mathematic and its applications 2015 (2015) pp.1-18.

S.Gal, Introduction to geometric function theory of hypercomplex variables, Nova Science Publishers XVI (2002) pp.319-322.

R.Goyal, Bicomplex polygamma function, Tokyo Journal of Mathematics 30 (2007) pp.523-530 DOI: https://doi.org/10.3836/tjm/1202136693

W. R. Hamilton, Lectures on quaternions containing a systematic statement of a new mathematical method, Dublin 1853.

G.Kaiser, A friendly guide to wavelets, Birkhauser, Boston 1994.

A.Motter and M. Rosa, Hyperbolic calculus, Adv. Appl. Clifford Algebra 8(1998) pp.109-128. DOI: https://doi.org/10.1007/BF03041929

E.Martineau and D.Rochon, On a bicomplex distance estimation for tetrabrot, Int. J. Bifurcation Chaos 15(2005) pp.3039-3035. DOI: https://doi.org/10.1142/S0218127405013873

J.H.Mathews and R.W.Howell, Complex analysis for mathematics and engineers, Narosa Publication 2006.

Y.V.Sidorov, M.V.Fedoryuk and M.I.Shabunin, Lectures on the theory of functions of complex variable, Mir Publishers,Moscow 1985.

C.Segre, Le rappresentazioni reali delle forme complesse a gli enti iperalgebrici, Math.Ann. 40(1892) pp.413-467. DOI: https://doi.org/10.1007/BF01443559

  • NA

Metrics

Metrics Loading ...

Published

01-04-2016

How to Cite

A. Banerjee, S.K.Datta, and Md. A. Hoque. “Inverse Fourier Transform for Bi-Complex Variables”. Malaya Journal of Matematik, vol. 4, no. 02, Apr. 2016, pp. 263-70, doi:10.26637/mjm402/010.