Energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks
Downloads
DOI:
https://doi.org/10.26637/mjm402/013Abstract
We consider the nonlinear wave equation in a bounded domain with a time varying delay term in the weakly nonlinear internal feedback
\begin{align*}
&\left(\left|u_t\right|^{\gamma-2} u_t\right)_t-\Delta_x u-\int_0^t g(t-s) \Delta u(s) d s\\&+\mu_1 \psi\left(u_t(x, t)\right)+\mu_2 \psi\left(u_t(x, t-\tau(t))\right)=0,
\end{align*}
we study the asymptotic behavior of solutions in using the Lyapunov functional, we extend and improve the previous result due to [30].
Keywords:
Energy decay, viscoelastic term, time varying delay termMathematics Subject Classification:
34G20- Pages: 284-296
- Date Published: 01-04-2016
- Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)
C. Abdallah, P. Dorato, J. Benitez-Read & R. Byrne, Delayed Positive Feedback Can Stabilize Oscillatory System, ACC, San Francisco, (1993), 3106-3107. DOI: https://doi.org/10.23919/ACC.1993.4793475
V. I. Arnold, Mathematical methods of classical mecanics, Springer-Verlag, New York, 1989. DOI: https://doi.org/10.1007/978-1-4757-2063-1
A. Benaissa & A. Guesmia, Energy decay for wave equations of $phi$-Laplacian type with weakly nonlinear dissipation, Electron. J. Differ. Equations 2008, (2008).
M. M. Cavalcanti, V. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, J. Diff. Equa., 236 (2007), 407-459. DOI: https://doi.org/10.1016/j.jde.2007.02.004
G. Chen, Control and stabilization for the wave equation in a bounded domain, Part I, SIAM J. Control Optim., 17 (1979), 66-81. DOI: https://doi.org/10.1137/0317007
G. Chen, Control and stabilization for the wave equation in a bounded domain, Part II, SIAM J. Control Optim., $19(1981), 114-122$. DOI: https://doi.org/10.1137/0319009
R. Datko, J. Lagnese & M.P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim. 24 (1986), 152-156. DOI: https://doi.org/10.1137/0324007
M. Eller, J. E. Lagnese & S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Computational. Appl. Math., 21 (2002), 135-165.
A. Haraux, Two remarks on dissipative hyperbolic problems, Research Notes in Mathematics, vol. 122. Pitman: Boston, MA, 1985; 161-179.
T. Kato, Linear and quasilinear equations of evolution of hyperbolic type, C.I.M.E., II ciclo:125-191, 1976. DOI: https://doi.org/10.1007/978-3-642-11105-1_4
T. Kato, Abstract differential equations and nonlinear mixed problems. Lezioni Fermiane, [Fermi Lectures]. Scuola Normale Superiore, Pisa, 1985.
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris, 1994.
I. Lasiecka & D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary dampin, Diff. Inte. Equa., 6 (1993), 507-533. DOI: https://doi.org/10.57262/die/1370378427
J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris 1969.
W. J. Liu & E. Zuazua, Decay rates for dissipative wave equations, Ricerche di Matematica, XLVIII (1999), $61-75$.
P. Martinez, J. Vancostenoble, Optimality of energy estimates for the wave equation with nonlinear boundary velocity feedbacks, SIAM J. Control Optim. 39 (2000)-3, 776-797. DOI: https://doi.org/10.1137/S0363012999354211
M. Nakao, Decay ofsolutions ofsome nonlinear evolution equations, J. Math. Anal. Appl., 60 (1977), $542-549$. DOI: https://doi.org/10.1016/0022-247X(77)90040-3
S. Nicaise & C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim. 45 (2006)-5, 1561-1585. DOI: https://doi.org/10.1137/060648891
S. Nicaise & C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Int. Equ. $21(2008)$, 935-958. DOI: https://doi.org/10.57262/die/1356038593
S. Nicaise & J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay, ESAIM Control Optim. Calc. Var. 16 (2010)-2, 420-456. DOI: https://doi.org/10.1051/cocv/2009007
S. Nicaise; C. Pignotti & J. Valein, Exponential stability of the wave equation with boundary time-varying delay, Discrete Contin. Dyn. Syst. Ser. S 4 (2011)-3, 693-722. DOI: https://doi.org/10.3934/dcdss.2011.4.693
S. Nicaise, J. Valein & E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S 2 (2009)-3, 559-581.
Park, J. Y. & Park, S. H, General decay for a nonlinear beam equation with weak dissipation, J. Math. Phys. 51, $073508,1-8$. DOI: https://doi.org/10.1063/1.3460321
W. Rudin, Real and complex analysis, second edition, McGraw-Hill, Inc., New York, 1974.
F.G. Shinskey, Process Control Systems, McGraw-Hill Book Company, 1967.
I.H. Suh & Z. Bien, Use of time delay action in the controller design, IEEE Trans. Autom. Control 25 (1980) 600-603. DOI: https://doi.org/10.1109/TAC.1980.1102347
C.Q. Xu, S.P. Yung & L.K. Li, Stabilization of the wave system with input delay in the boundary control, ESAIM Control Optim. Calc. Var. 12 (2006) 770-785. DOI: https://doi.org/10.1051/cocv:2006021
Q. C. Zhong, Robust Control of Time-delay Systems, London: Springer, 2006.
S.MESSAUDI AND M.MUSTAFA, On convexity for energy decay rates of viscoalastic equation with boundary feedback , Nonlin. Anal., 71:3602-3611, 2010. DOI: https://doi.org/10.1016/j.na.2009.12.040
Benaissa. A, S. A. Messaoudi AnD I. Bengessoum, Global existence and energy decay of solutions to a viscoelastic wave equation with a delay term in the nonlinear internal feedback. I.J. D. S.D.E . 5(2014)1-24. DOI: https://doi.org/10.1504/IJDSDE.2014.067080
K. Zennir, General energy decay for nonlinear wave equation of $phi$-Laplacian type with a delay term in the internal feedback Malaya J. Mat. 3(2)(2015) 143-152. DOI: https://doi.org/10.26637/mjm302/002
- NA
Similar Articles
- R.Raja Rajeswari, K. Suguna Devi, N.Durga Devi , Intuitionistic filter , Malaya Journal of Matematik: Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)
- A. Ibrahim, V. Nirmala, Intuitionistic fuzzy classes of implicative filters in RLW-algebras , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.