Energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks

Downloads

DOI:

https://doi.org/10.26637/mjm402/013

Abstract

We consider the nonlinear wave equation in a bounded domain with a time varying delay term in the weakly nonlinear internal feedback
\begin{align*}
&\left(\left|u_t\right|^{\gamma-2} u_t\right)_t-\Delta_x u-\int_0^t g(t-s) \Delta u(s) d s\\&+\mu_1 \psi\left(u_t(x, t)\right)+\mu_2 \psi\left(u_t(x, t-\tau(t))\right)=0,
\end{align*}
we study the asymptotic behavior of solutions in using the Lyapunov functional, we extend and improve the previous result due to [30].

Keywords:

Energy decay, viscoelastic term, time varying delay term

Mathematics Subject Classification:

34G20
  • Mohamed Ferhat Department of Mathematics, Usto University – P. O. Box 89, Oran 31000, ALGERIA.
  • Pages: 284-296
  • Date Published: 01-04-2016
  • Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)

C. Abdallah, P. Dorato, J. Benitez-Read & R. Byrne, Delayed Positive Feedback Can Stabilize Oscillatory System, ACC, San Francisco, (1993), 3106-3107. DOI: https://doi.org/10.23919/ACC.1993.4793475

V. I. Arnold, Mathematical methods of classical mecanics, Springer-Verlag, New York, 1989. DOI: https://doi.org/10.1007/978-1-4757-2063-1

A. Benaissa & A. Guesmia, Energy decay for wave equations of $phi$-Laplacian type with weakly nonlinear dissipation, Electron. J. Differ. Equations 2008, (2008).

M. M. Cavalcanti, V. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, J. Diff. Equa., 236 (2007), 407-459. DOI: https://doi.org/10.1016/j.jde.2007.02.004

G. Chen, Control and stabilization for the wave equation in a bounded domain, Part I, SIAM J. Control Optim., 17 (1979), 66-81. DOI: https://doi.org/10.1137/0317007

G. Chen, Control and stabilization for the wave equation in a bounded domain, Part II, SIAM J. Control Optim., $19(1981), 114-122$. DOI: https://doi.org/10.1137/0319009

R. Datko, J. Lagnese & M.P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim. 24 (1986), 152-156. DOI: https://doi.org/10.1137/0324007

M. Eller, J. E. Lagnese & S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Computational. Appl. Math., 21 (2002), 135-165.

A. Haraux, Two remarks on dissipative hyperbolic problems, Research Notes in Mathematics, vol. 122. Pitman: Boston, MA, 1985; 161-179.

T. Kato, Linear and quasilinear equations of evolution of hyperbolic type, C.I.M.E., II ciclo:125-191, 1976. DOI: https://doi.org/10.1007/978-3-642-11105-1_4

T. Kato, Abstract differential equations and nonlinear mixed problems. Lezioni Fermiane, [Fermi Lectures]. Scuola Normale Superiore, Pisa, 1985.

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris, 1994.

I. Lasiecka & D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary dampin, Diff. Inte. Equa., 6 (1993), 507-533. DOI: https://doi.org/10.57262/die/1370378427

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris 1969.

W. J. Liu & E. Zuazua, Decay rates for dissipative wave equations, Ricerche di Matematica, XLVIII (1999), $61-75$.

P. Martinez, J. Vancostenoble, Optimality of energy estimates for the wave equation with nonlinear boundary velocity feedbacks, SIAM J. Control Optim. 39 (2000)-3, 776-797. DOI: https://doi.org/10.1137/S0363012999354211

M. Nakao, Decay ofsolutions ofsome nonlinear evolution equations, J. Math. Anal. Appl., 60 (1977), $542-549$. DOI: https://doi.org/10.1016/0022-247X(77)90040-3

S. Nicaise & C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim. 45 (2006)-5, 1561-1585. DOI: https://doi.org/10.1137/060648891

S. Nicaise & C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Int. Equ. $21(2008)$, 935-958. DOI: https://doi.org/10.57262/die/1356038593

S. Nicaise & J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay, ESAIM Control Optim. Calc. Var. 16 (2010)-2, 420-456. DOI: https://doi.org/10.1051/cocv/2009007

S. Nicaise; C. Pignotti & J. Valein, Exponential stability of the wave equation with boundary time-varying delay, Discrete Contin. Dyn. Syst. Ser. S 4 (2011)-3, 693-722. DOI: https://doi.org/10.3934/dcdss.2011.4.693

S. Nicaise, J. Valein & E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S 2 (2009)-3, 559-581.

Park, J. Y. & Park, S. H, General decay for a nonlinear beam equation with weak dissipation, J. Math. Phys. 51, $073508,1-8$. DOI: https://doi.org/10.1063/1.3460321

W. Rudin, Real and complex analysis, second edition, McGraw-Hill, Inc., New York, 1974.

F.G. Shinskey, Process Control Systems, McGraw-Hill Book Company, 1967.

I.H. Suh & Z. Bien, Use of time delay action in the controller design, IEEE Trans. Autom. Control 25 (1980) 600-603. DOI: https://doi.org/10.1109/TAC.1980.1102347

C.Q. Xu, S.P. Yung & L.K. Li, Stabilization of the wave system with input delay in the boundary control, ESAIM Control Optim. Calc. Var. 12 (2006) 770-785. DOI: https://doi.org/10.1051/cocv:2006021

Q. C. Zhong, Robust Control of Time-delay Systems, London: Springer, 2006.

S.MESSAUDI AND M.MUSTAFA, On convexity for energy decay rates of viscoalastic equation with boundary feedback , Nonlin. Anal., 71:3602-3611, 2010. DOI: https://doi.org/10.1016/j.na.2009.12.040

Benaissa. A, S. A. Messaoudi AnD I. Bengessoum, Global existence and energy decay of solutions to a viscoelastic wave equation with a delay term in the nonlinear internal feedback. I.J. D. S.D.E . 5(2014)1-24. DOI: https://doi.org/10.1504/IJDSDE.2014.067080

K. Zennir, General energy decay for nonlinear wave equation of $phi$-Laplacian type with a delay term in the internal feedback Malaya J. Mat. 3(2)(2015) 143-152. DOI: https://doi.org/10.26637/mjm302/002

  • NA

Metrics

Metrics Loading ...

Published

01-04-2016

How to Cite

Mohamed Ferhat. “Energy Decay of Solutions for the Wave Equation With a Time Varying Delay Term in the Weakly Nonlinear Internal Feedbacks”. Malaya Journal of Matematik, vol. 4, no. 02, Apr. 2016, pp. 284-96, doi:10.26637/mjm402/013.