On pseudo valuation and pseudo almost valuation semidomains

Downloads

DOI:

https://doi.org/10.26637/mjm1002/005

Abstract

In this study, we characterize pseudo valuation and pseudo almost valuation semidomains. We also discuss the conditions which forces a semidomain to be a pseudo valuation semidomain. Further, we introduce the notion of pseudo almost valuation semidomains and investigate some results regarding it.

Keywords:

Semidomains, Prime ideals, Pseudo valuation semidomains, Pseudo almost valuation semidomains

Mathematics Subject Classification:

16Y60, 16Y99
  • Pages: 151-158
  • Date Published: 01-04-2022
  • Vol. 10 No. 02 (2022): Malaya Journal of Matematik (MJM)

D.D. ANDERSON AND M. ZAFRULLAH, Almost Bézout domains, J. Algebra, 142(1991), 285-309.

D.F. ANDERSON AND D.E. DOBBS, Pairs of rings with the same prime ideals, Can. J. Math., 32(1980), 362-384.

A. BADAWI, On domains which have prime ideals that are linearly ordered, Commun. Algebra, 23(12)(1995), 4365-4373.

A. BADAWI, On Pseudo-almost valuation domains, Commun. Algebra, 35(2007), 1167-1181.

S. BOURNE, The Jacobson radical of a semiring, Proc. Nat. Acad. Sci., 37(1951), 163-170.

K. GLAZEK, A Guide to the Literature on Semirings and Their Applications in Mathematics and Information Sciences, Kluwer, Dordrecht, 2002.

J.S. GOLAN, Power Algebras over Semirings, with Applications in Mathematics and Computer Science, Kluwer, Dordrecht, 1999.

J.S. GOLAN, Semirings and Their Applications, Kluwer, Dordrecht, 1999.

J.S. GOLAN, Semirings and Affine Equations over Them: Theory and Applications, Kluwer, Dordrecht, 2003.

M. GONDRAN AND M. MINOUX, Graphs, Dioids and Semirings, Springer, New York, 2008.

U. HEBISCH AND H.J. WEINERT, Semirings, Algebraic Theory and Applications in Computer Science, World Scientific, Singapore, 1998.

J.R. HEDSTROM AND E.G. HOUSTON, Pseudo-valuation domains, Pacific J. Math., 75(1) (1978), $137-147$.

W. KUICH AND A. SALOMAA, Semirings, Automata, Languages, Springer-Verlag, Berlin, 1986.

P. NASEHPOUR, A brief history of algebra with a focus on the distributive law and semiring theory, arXiv:1807.11704 [math.HO], 2018.

P. NASEHPOUR, Some remarks on semirings and their ideals, Asian-Eur. J. Math., 13(1) (2020), Article ID 2050002 (14 pages).

P. NASEHPOUR, Some remarks on ideals of commutative semirings, Quasigroups Relat. Syst., 26(2) (2018), 281-298.

P. NASEHPOUR, Valuation semirings, J. Algebra Appl., 16(11) (2018), Article ID 1850073 (23 pages).

R. SHARMA AND MADHU, Partitioning Ideals of a Semiring $R$ and its Skew Group Semiring $R * G$, Journal of Combinatorics Information and System Sciences, 43(2018), 47-56.

R.P. SHARMA, M. DADHWAL, R. SHARMA AND S. KAR, On the Primary Decomposition of k-ideals and Fuzzy K-Ideals in Semirings, Fuzzy Information and Engineering, DOI: 10.1080/16168658.2021.1950390.

R.P. SHARMA AND MADHU, On connes subgroups and graded semirings, Vietnam Journal of Mathematics, 38(2010), 287-298.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2022

How to Cite

Dadhwal, M. B., and G. Devi. “On Pseudo Valuation and Pseudo Almost Valuation Semidomains”. Malaya Journal of Matematik, vol. 10, no. 02, Apr. 2022, pp. 151-8, doi:10.26637/mjm1002/005.