On the probabilistic stability of the 2-variable \(k\)-AC-mixed type functional equation

Downloads

DOI:

https://doi.org/10.26637/mjm402/015

Abstract

In this paper, we obtain the general solution and the generalized Ulam-Hyers stability of the 2-variable \(k\)-AC mixed type functional equation
$$
\begin{aligned}
& f(x+k y, z+k w)+f(x-k y, z-k w) \\
& \quad=k^2[f(x+y, z+w)+f(x-y, z-w)]+2\left(1-k^2\right) f(x, z) .
\end{aligned}
$$
for any \(k \in Z-\{0, \pm 1\}\) in \(\alpha\)-Šerstnev Menger Probabilistic normed spaces.

Keywords:

Generalized Hyers-Ulam-Rassias stability, \(\alpha\)- ˇ Serstnev Menger Probabilistic normed spaces , \(k\)-AC mixed type functional equation

Mathematics Subject Classification:

39B55, 39B52, 39B82
  • K. Ravi Department of Mathematics, Sacred Heart College, Tirupattur - 635601, Tamilnadu, India.
  • R. Jamuna Research Scholar, Research and Development Centre, Bharathiar University, Coimbatore - 641046, India.
  • Matina J. Rassias Department of Statistical Science, University College London, 1-19 Torrington Place, #140, London, WC1E 7HB, UK.
  • Yanhui Zhang Department of Mathematics, Beijing Technology and Business University, China.
  • R. Kishore Kumar Research Scholar, Indian Institute of Technology, Kharagpur, India.
  • Pages: 305-317
  • Date Published: 01-04-2016
  • Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)

C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space, Aequationes Math., 46 (1993), 91–98. DOI: https://doi.org/10.1007/BF01834000

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.1 DOI: https://doi.org/10.2969/jmsj/00210064

M. Arun Kumar, Matina J. Rassias, Yanhui Zhang, Ulam-Hyers stability of a 2-variable AC-mixed type functional equation: direct and fixed point methods, Journal of Modern Mathematics Frontier, 1(3) (2012), $10-26$.

P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27(1-2) (1984), 76-86. DOI: https://doi.org/10.1007/BF02192660

M. Eshagi Gordji and H. Khodaie, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, arxiv : 0812. 2939 VI Math FA (2008).

M. Eshaghi Gordji and H. Khodaie, The fixed point method for fuzzy approximation of a functional equation associated with inner product spaces, Discrete Dyn. Nat. Soc., 2010 (2010), Article ID 140767, 15 pages, doi: 10.1155 / $2010 / 14076$. DOI: https://doi.org/10.1155/2010/140767

P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211

P. Gǎvruta and L. Gǎvruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl., 1(2) (2010), 11-18.

D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., USA, 27 (1941), 222224.1. DOI: https://doi.org/10.1073/pnas.27.4.222

D.H. Hyers, G. Isac and T.M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, (1998). DOI: https://doi.org/10.1007/978-1-4612-1790-9

D.H. Hyers, G. Isac and Th.M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proceedings of the American Mathematical Society, 126(2) (1998), 425-430. DOI: https://doi.org/10.1090/S0002-9939-98-04060-X

K.W. Jun and H.M. Kim, On the Hyers-Ulam stability of a generalized quadratic and additive functional equation, Bulletin of the Korean Mathematical Society, 42(1) (2005), 133-148. DOI: https://doi.org/10.4134/BKMS.2005.42.1.133

K.W. Jun and H.M. Kim, Ulam stability problem for generalized A-quadratic mappings, Journal of Mathematical Analysis and Applications, 305(2) (2005), 466-476. DOI: https://doi.org/10.1016/j.jmaa.2004.10.058

B. Lafuerza-Guillén and J.L. Rodríguez, Boundedness in generalized Šerstnev spaces, http:// front.math.UCdavis.edu/ math.PR/ 0408207.

Y.H. Lee and K.W. Jun, A note on the Hyers-Ulam-Ravias stability of Penider equation, Journal of the Korean Mathematical Society, 37(1) (2000), 111-124.

K. Menger, Statistical metrices, Proc. Nat. Acad. Sci., USA, (28) (1942), 535-537. DOI: https://doi.org/10.1073/pnas.28.12.535

A. Najati, On the stability of a quartic functional equation, Journal of Mathematical Analysis and Applications, 340(1) (2008), 569-574. DOI: https://doi.org/10.1016/j.jmaa.2007.08.048

A. Najati and C. Park, Hyers-Ulam-Ravias stability of homomorphisms in quasi-Banach algebras associated to the Pexidesized Cauchy functional equation, Journal of Mathematical Analysis and Applications, 335(2) (2007), 763-778. DOI: https://doi.org/10.1016/j.jmaa.2007.02.009

C.G. Park, On the stability of the quadratic mappings in Banach modules, Journal of Mathematical Analysis and Applications, 276(1) (2002), 135-144. DOI: https://doi.org/10.1016/S0022-247X(02)00387-6

C.G. Park, On the stability Hyers-Ulam-Ravias stability of generalized quadratic mappings in Banach modules, Journal of Mathematical Analysis and Applications, 291(1) (2004), 214-223. DOI: https://doi.org/10.1016/j.jmaa.2003.10.027

J.M. Rassias, M. Arun Kumar, S. Ramamoorthi and s. Hemalatha, Ulam-Hyers stability of a 2-variable AC-mixed type functional equation in quasi-beta normed spaces: direct and fixed point methods, Malaya Journal of Matematik, 2(2) (2014), 108–128. DOI: https://doi.org/10.26637/mjm202/003

Th. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72(2) (1978), $297-300.1$ DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1

Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Mathematica, Universitatis Babes-Bolyai, 43(3) (1998), 89-124.

Th.M. Rassias and J. Tabe, Eds., Stability of mappings of Hyers-Ulam Type, Handronic Press Collection of Original articles, Handronic Press, Palm Harbour, Fla, USA, (1994).

K. Ravi and M. Arun Kumar, Stability of a 3-variable quadratic functional equation, Journal of Quality Measurement and Analysis, (1) (2008), 97-107.

S. Saminger-Platz and C. Sempi, A primer on triangle functions I, Aequationes Math., 76 (2008), 201-240, doi: 10.1007 / S00010-008-2936-8. DOI: https://doi.org/10.1007/s00010-008-2936-8

S. Saminger-Platz and C. Sempi, A primer on triangle functions II, Aequationes Math., 80 (2008), 239-268, doi: 10.1007 / S00010-010-0038-X. DOI: https://doi.org/10.1007/s00010-010-0038-x

A.N. Šerstnev, On the notion of a random normed space, Dokl. Akad. Nauk, SSSR, 149 (1963), $280-283$.

Stefan Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, London, 2002. DOI: https://doi.org/10.1142/4875

S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, (1964).1.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2016

How to Cite

K. Ravi, R. Jamuna, Matina J. Rassias, Yanhui Zhang, and R. Kishore Kumar. “On the Probabilistic Stability of the 2-Variable \(k\)-AC-Mixed Type Functional Equation”. Malaya Journal of Matematik, vol. 4, no. 02, Apr. 2016, pp. 305-17, doi:10.26637/mjm402/015.