On the probabilistic stability of the 2-variable \(k\)-AC-mixed type functional equation
Downloads
DOI:
https://doi.org/10.26637/mjm402/015Abstract
In this paper, we obtain the general solution and the generalized Ulam-Hyers stability of the 2-variable \(k\)-AC mixed type functional equation
$$
\begin{aligned}
& f(x+k y, z+k w)+f(x-k y, z-k w) \\
& \quad=k^2[f(x+y, z+w)+f(x-y, z-w)]+2\left(1-k^2\right) f(x, z) .
\end{aligned}
$$
for any \(k \in Z-\{0, \pm 1\}\) in \(\alpha\)-Šerstnev Menger Probabilistic normed spaces.
Keywords:
Generalized Hyers-Ulam-Rassias stability, \(\alpha\)- ˇ Serstnev Menger Probabilistic normed spaces , \(k\)-AC mixed type functional equationMathematics Subject Classification:
39B55, 39B52, 39B82- Pages: 305-317
- Date Published: 01-04-2016
- Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)
C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space, Aequationes Math., 46 (1993), 91–98. DOI: https://doi.org/10.1007/BF01834000
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.1 DOI: https://doi.org/10.2969/jmsj/00210064
M. Arun Kumar, Matina J. Rassias, Yanhui Zhang, Ulam-Hyers stability of a 2-variable AC-mixed type functional equation: direct and fixed point methods, Journal of Modern Mathematics Frontier, 1(3) (2012), $10-26$.
P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27(1-2) (1984), 76-86. DOI: https://doi.org/10.1007/BF02192660
M. Eshagi Gordji and H. Khodaie, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, arxiv : 0812. 2939 VI Math FA (2008).
M. Eshaghi Gordji and H. Khodaie, The fixed point method for fuzzy approximation of a functional equation associated with inner product spaces, Discrete Dyn. Nat. Soc., 2010 (2010), Article ID 140767, 15 pages, doi: 10.1155 / $2010 / 14076$. DOI: https://doi.org/10.1155/2010/140767
P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211
P. Gǎvruta and L. Gǎvruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl., 1(2) (2010), 11-18.
D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., USA, 27 (1941), 222224.1. DOI: https://doi.org/10.1073/pnas.27.4.222
D.H. Hyers, G. Isac and T.M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, (1998). DOI: https://doi.org/10.1007/978-1-4612-1790-9
D.H. Hyers, G. Isac and Th.M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proceedings of the American Mathematical Society, 126(2) (1998), 425-430. DOI: https://doi.org/10.1090/S0002-9939-98-04060-X
K.W. Jun and H.M. Kim, On the Hyers-Ulam stability of a generalized quadratic and additive functional equation, Bulletin of the Korean Mathematical Society, 42(1) (2005), 133-148. DOI: https://doi.org/10.4134/BKMS.2005.42.1.133
K.W. Jun and H.M. Kim, Ulam stability problem for generalized A-quadratic mappings, Journal of Mathematical Analysis and Applications, 305(2) (2005), 466-476. DOI: https://doi.org/10.1016/j.jmaa.2004.10.058
B. Lafuerza-Guillén and J.L. Rodríguez, Boundedness in generalized Šerstnev spaces, http:// front.math.UCdavis.edu/ math.PR/ 0408207.
Y.H. Lee and K.W. Jun, A note on the Hyers-Ulam-Ravias stability of Penider equation, Journal of the Korean Mathematical Society, 37(1) (2000), 111-124.
K. Menger, Statistical metrices, Proc. Nat. Acad. Sci., USA, (28) (1942), 535-537. DOI: https://doi.org/10.1073/pnas.28.12.535
A. Najati, On the stability of a quartic functional equation, Journal of Mathematical Analysis and Applications, 340(1) (2008), 569-574. DOI: https://doi.org/10.1016/j.jmaa.2007.08.048
A. Najati and C. Park, Hyers-Ulam-Ravias stability of homomorphisms in quasi-Banach algebras associated to the Pexidesized Cauchy functional equation, Journal of Mathematical Analysis and Applications, 335(2) (2007), 763-778. DOI: https://doi.org/10.1016/j.jmaa.2007.02.009
C.G. Park, On the stability of the quadratic mappings in Banach modules, Journal of Mathematical Analysis and Applications, 276(1) (2002), 135-144. DOI: https://doi.org/10.1016/S0022-247X(02)00387-6
C.G. Park, On the stability Hyers-Ulam-Ravias stability of generalized quadratic mappings in Banach modules, Journal of Mathematical Analysis and Applications, 291(1) (2004), 214-223. DOI: https://doi.org/10.1016/j.jmaa.2003.10.027
J.M. Rassias, M. Arun Kumar, S. Ramamoorthi and s. Hemalatha, Ulam-Hyers stability of a 2-variable AC-mixed type functional equation in quasi-beta normed spaces: direct and fixed point methods, Malaya Journal of Matematik, 2(2) (2014), 108–128. DOI: https://doi.org/10.26637/mjm202/003
Th. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72(2) (1978), $297-300.1$ DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1
Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Mathematica, Universitatis Babes-Bolyai, 43(3) (1998), 89-124.
Th.M. Rassias and J. Tabe, Eds., Stability of mappings of Hyers-Ulam Type, Handronic Press Collection of Original articles, Handronic Press, Palm Harbour, Fla, USA, (1994).
K. Ravi and M. Arun Kumar, Stability of a 3-variable quadratic functional equation, Journal of Quality Measurement and Analysis, (1) (2008), 97-107.
S. Saminger-Platz and C. Sempi, A primer on triangle functions I, Aequationes Math., 76 (2008), 201-240, doi: 10.1007 / S00010-008-2936-8. DOI: https://doi.org/10.1007/s00010-008-2936-8
S. Saminger-Platz and C. Sempi, A primer on triangle functions II, Aequationes Math., 80 (2008), 239-268, doi: 10.1007 / S00010-010-0038-X. DOI: https://doi.org/10.1007/s00010-010-0038-x
A.N. Šerstnev, On the notion of a random normed space, Dokl. Akad. Nauk, SSSR, 149 (1963), $280-283$.
Stefan Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, London, 2002. DOI: https://doi.org/10.1142/4875
S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, (1964).1.
- NA
Similar Articles
- Mohamed Ferhat, Energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks , Malaya Journal of Matematik: Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.