On separation axioms in ideal topological spaces
Downloads
DOI:
https://doi.org/10.26637/mjm402/016Abstract
Separation axioms in ideal topological spaces are discussed in the literature. In this paper we define the separation axioms in ideal topological spaces in a new way which is more natural than the previous versions and discuss some properties. Also we discuss the relationship of our definition with other definitions and prove some results in the context of separation axioms in ideal topological space. We show a property that holds in ideal topological theory which does not hold in the classical theory of topology; and also we show a property that holds in the classical theory that does not hold in the ideal topological theory.
Keywords:
Hausdorff, regular, normal, ideal topological spacesMathematics Subject Classification:
54A05, 54D10, 54D15- Pages: 318-324
- Date Published: 01-04-2016
- Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)
M. E. Abd El-Monsef, R. A. Mahmoud and A. A. Nasef, On Quasi I-openness and Quasi I-continuity Tamkang Journal of Mathematics, 31(2) (2000), 101-108. DOI: https://doi.org/10.5556/j.tkjm.31.2000.401
J. Dontchev, On Hausdorff Spaces via Ideals and I-irresolute Functions, Annals of New York Academy or Sciences, 767 (1995), 28-38. DOI: https://doi.org/10.1111/j.1749-6632.1995.tb55891.x
E. Hatir and T. Noiri, On Decomposition of Continuity via Idealization, Acta Math. Hungar., 96(4) (2002), 341 $-349$. DOI: https://doi.org/10.1023/A:1019760901169
E. Hatir and T. Noiri, On Hausdorff Spaces via Ideals and Semi-I-irresolute Functions, European J. Pure and App. Math., 2(2) (2009), 172-181.
Erdal Ekici and Takashi Noiri, Properties of I-submaximal Ideal Topological Spaces, Filomat 24(4) (2010), 87-94 DOI: https://doi.org/10.2298/FIL1004087E
D. Janković and T. R. Hamlett, New Topologies from Old via Ideals, Amer. Math. Monthly, 97 (1990), 295-310 DOI: https://doi.org/10.1080/00029890.1990.11995593
J. L. Kelley, General Topology, Van Nostrand Reinhold Company, New York, (1955).
K.Kuratowski, Topology, Vol. I., New York, Academic Press, (1966).
A. A. Nasef, On Hausdorff Spaces via Ieals and Quasi-I-irresolute Functions, Chaos Solitons and Fractals, 14 (2002), 619-625. DOI: https://doi.org/10.1016/S0960-0779(01)00207-7
J. R. Munkres, Topology, Second Edition, PHI Learning, New Delhi, (2009).
S. Suriyakala and R. Vembu, Relations between Union and Intersection of Ideals and Their Corresponding Ideal Topologies, Novi Sad J.Math., 45(2) (2015), 39-46. DOI: https://doi.org/10.30755/NSJOM.2014.013
R. Vaidyanathaswamy, The Localisation Theory in Set Topology, Proc. Indian Acad. Sci. 20 (1945), 51-61. DOI: https://doi.org/10.1007/BF03048958
- NA
Similar Articles
- O. Akcay, Kh. R. Mamedov , On the spectral expansion formula for a class of Dirac operators , Malaya Journal of Matematik: Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.