Cototal edge domination number of a graph
Downloads
DOI:
https://doi.org/10.26637/mjm402/017Abstract
A set \(F\) of a graph \(G(V, E)\) is an edge dominating set if every edge in \(E-F\) is adjacent to some edge in \(F\). An edge domination number \(\gamma^{\prime}(G)\) of \(G\) is the minimum cardinality of an edge dominating set. An edge dominating set \(F\) is called a cototal edge dominating set if the induced subgraph \(\langle E-F\rangle\) doesnot contain isolated edge. The minimum cardinality of the cototal edge dominating set in \(G\) is its domination number and is denoted by \(\gamma_{c o t}^{\prime}(G)\). We investigate several properties of cototal edge dominating sets and give some bounds on the cototal edge domination number.
Keywords:
Edge domination number, cototal edge domination numberMathematics Subject Classification:
05C78- Pages: 325-337
- Date Published: 01-04-2016
- Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)
R.B. Allan and R. Laskar, On domination and independent domination numbers of a graph, Discrete Math, 23(1978), 73-76. DOI: https://doi.org/10.1016/0012-365X(78)90105-X
S. Arumugam and S. Velammal, Edge domination in graphs, Taiwaness Journal of Mathematics, 2(1998), 173-179. DOI: https://doi.org/10.11650/twjm/1500406930
Doost Ali Mojdeh and Razieh Sadeghi, Independendent edge dominating set of certain graphs, International Mathematical Forum, 2(7)(2007), 315-320. DOI: https://doi.org/10.12988/imf.2007.07029
F. Harary, Graph theory, Addison-Wesley, Reading Mass (1969). DOI: https://doi.org/10.21236/AD0705364
T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York, (1998).
V.R.Kulli, B.Janakiram and R.R.Iyer, The cototal domination number of a graph, J. Discrete Mathematical Sciences and Cryptography 2(1999), 179-184. DOI: https://doi.org/10.1080/09720529.1999.10697889
S.Mitchell and S.T. Hedetniemi, Edge domination in trees, Congr. Numer., 19(1977), 489-509.
- NA
Similar Articles
- K. Ravi, R. Jamuna, Matina J. Rassias, Yanhui Zhang, R. Kishore Kumar, On the probabilistic stability of the 2-variable \(k\)-AC-mixed type functional equation , Malaya Journal of Matematik: Vol. 4 No. 02 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.