Certain properties of a subclass of harmonic convex functions of complex order defined by multiplier transformations

Downloads

DOI:

https://doi.org/10.26637/mjm403/003

Abstract

In this paper, we investigate some properties of harmonic univalent functions of complex order using multiplier transformation.Such as Coefficient bounds, extreme points, distortion bounds, convolution conditions and convex combination are determined for functions in this family. Further, we obtain the closure property of this class under integral operator. Consequently, many of our results are either extensions or new approaches to those corresponding to previously known results.

Keywords:

Harmonic functions, analytic functions, univalent functions, starlike functions of complex order, Multiplier transformation

Mathematics Subject Classification:

30C45, 30C50
  • K. Thilagavathi Department of Mathematics,School of advanced Sciences, VIT University, Vellore-632014, Tamil Nadu, India.
  • K. Vijaya Department of Mathematics,School of advanced Sciences, VIT University, Vellore-632014, Tamil Nadu, India.
  • N. Magesh P.G. and Research Department of Mathematics, Govt Arts College (Men), Krishnagiri - 635 001, Tamil Nadu, India.
  • Pages: 362-372
  • Date Published: 01-07-2016
  • Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)

M. Abbas, H. Aydi and E. Karapinar, Tripled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces, Abstr. Appl. Anal., Volume 2011 (2011), Article ID 812690, 12 pages. DOI: https://doi.org/10.1155/2011/812690

Y. Avcl and E. Złotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 44 (1990), 1-7 (1991).

J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25. DOI: https://doi.org/10.5186/aasfm.1984.0905

S. A. Halim and A. Janteng, Harmonic functions starlike of complex order,Proc. Int. Symp. on New Development of Geometric function Theory and its Applications, (2008), 132-140.

J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Cruie-Sklodowska Sec.A 52 (1998), no. 2, 57-66.

J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235 (1999), no. 2, 470477. DOI: https://doi.org/10.1006/jmaa.1999.6377

G.Murugusundaramoorthy, Harmonic starlike functions of complex order involving hypergeometric functions, Matematicki Vesnik (2012) Volume: 64, Issue: 250, page 316-325.

M. A. Nasr and M. K. Aouf, Starlike function of complex order,J. Natur. Sci. Math. 25 (1985), no. 1, 1-12.

H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220 (1998), no. $1,283-289$. DOI: https://doi.org/10.1006/jmaa.1997.5882

H. Silverman and E. M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math. 28 (1999), no. 2, 275-284.

S. Yalçin and M. Öztürk, Harmonic functions starlike of the complex order, Mat. Vesnik 58 (2006), no. 1-2, 7-11.

S. Yalçin and M. Öztürk, On a subclass of certain convex armonic functions, J. Korean Math. Soc., 43 (2006), no. 4, 803-813. DOI: https://doi.org/10.4134/JKMS.2006.43.4.803

E. Yasar and S. Yalçin, On a subclass of harmonic univalent functions of complex order, Proc. Int. Symp. on New Development of Geometric function Theory and its Applications, (2010), 295-299.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2016

How to Cite

K. Thilagavathi, K. Vijaya, and N. Magesh. “Certain Properties of a Subclass of Harmonic Convex Functions of Complex Order Defined by Multiplier Transformations”. Malaya Journal of Matematik, vol. 4, no. 03, July 2016, pp. 362-7, doi:10.26637/mjm403/003.