Existence of solutions of \(q\)-functional integral equations with deviated argument

Downloads

DOI:

https://doi.org/10.26637/mjm403/004

Abstract

In this paper, we study the existence of solutions for \(q\)-functional integral equations in Banach space \(C[0, T]\). The existence and uniqueness of solutions for the problems are proved by means of the Banach contraction principle.

Keywords:

Banach contraction principle, Deviated argument, existence, \(q\)-functional integral equations

Mathematics Subject Classification:

534A08, 47H07, 47H10
  • A. M. A. El-Sayed Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt.
  • Fatma. M. Gaafar Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt.
  • R. O. Abd-El-Rahman Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt.
  • M. M. El-Haddad Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt.
  • Pages: 373-379
  • Date Published: 01-07-2016
  • Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)

C. R. Adams, On the linear ordinary q-difference equation, Am. Math. Ser. II, 30, (1929) PP. $195-205$. DOI: https://doi.org/10.2307/1968274

M. H. Annaby and Z. S. Mansour, q-Fractional Calculus and Equations. Springer, Heidelberg, 2012. DOI: https://doi.org/10.1007/978-3-642-30898-7

T. M. Apostol, Mathematical Analysis, 2nd Edition, Addison-Weasley Publishing Company Inc., (1974).

A. Aral, V. Gupta, and R. P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, 2013. DOI: https://doi.org/10.1007/978-1-4614-6946-9

G. Bangerezako, An Introduction to $q$-Difference Equations. Preprint, Bujumbura, 2007.

R. D. Carmichael, The general theory of linear q-difference equations, Am. J. Math. 34, (1912)PP. 147-168. DOI: https://doi.org/10.2307/2369887

V. V. Eremin, A.A. Meldianov, The $q$-deformed harmonic oscillator, coherent states, and the uncertainty relation. Theor. Math. Phys. 147(2), 709715 (2006). Translation from Teor. Mat. Fiz. 147(2)(2006) PP.315-322 DOI: https://doi.org/10.1007/s11232-006-0072-y

T. Ernst, A Comprehensive Treatment of $q$-Calculus, Springer Basel, 2012. DOI: https://doi.org/10.1007/978-3-0348-0431-8

H. Exton, q-Hypergeometric Functions and Applications (Ellis-Horwood), Chichester, (1983).

K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, (1990) 243 pages. DOI: https://doi.org/10.1017/CBO9780511526152

G. M. Guerekata, A Cauchy Problem for some Fractional Abstract Differential Equation with Nonlocal Conditions, Nonlinear Analysis, No. 70, (2009), PP. 1873-1876. DOI: https://doi.org/10.1016/j.na.2008.02.087

F. H. Jackson, On $q$-functions and a certain difference operator. Trans. R. Soc. Edinb. 46, (1908)PP.253-281. DOI: https://doi.org/10.1017/S0080456800002751

F. H. Jackson, On q-definite integrals. Q. J. Pure Appl. Math. 41,(1910)PP.193-203 .

F. H. Jackson, q-Difference equations, Am. J. Math. 32,(1910)PP.305-314 . DOI: https://doi.org/10.2307/2370183

V. Kac and P. Cheung, Quantum Calculus. Springer, New York (2002). DOI: https://doi.org/10.1007/978-1-4613-0071-7

A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Prentice Hallinc, (1970).

A. Lavagno, PN, Swamy, $q$-Deformed structures and nonextensive statistics: a comparative study. Physica A 305(1-2), 310-315 (2002) Non extensive thermodynamics and physical applications (Villasimius, 2001) DOI: https://doi.org/10.1016/S0378-4371(01)00680-X

X. Li, Z. Han, S. Sun and H. lu, Boundary value problems for fractional $q$-difference equations with nonlocal conditions.Adv. Differ. Equ. 2014, Article ID 57 (2013). DOI: https://doi.org/10.1186/1687-1847-2014-57

T. E. Mason, On properties of the solution of linear $q$-difference equations with entire fucntion coefficients, Am. J. Math. 37,(1915) PP. 439-444 . DOI: https://doi.org/10.2307/2370216

O. Nica, IVP for First-Order Differential Systems with General Nonlocal Condition, Electronic Journal of differential equations, Vol. 2012, No. 74, (2012), PP. 1-15.

W. J. Triitzinsky, Analytic theory of linear q-difference equations, Acta Mathematica,61(1),(1933)PP.1-38 . DOI: https://doi.org/10.1007/BF02547785

D. Youm, q-deformed conformal quantum mechanics. Phys. Rev. D 62, 095009 (2000). DOI: https://doi.org/10.1103/PhysRevD.62.084002

  • NA

Metrics

Metrics Loading ...

Published

01-07-2016

How to Cite

A. M. A. El-Sayed, Fatma. M. Gaafar, R. O. Abd-El-Rahman, and M. M. El-Haddad. “Existence of Solutions of \(q\)-Functional Integral Equations With Deviated Argument”. Malaya Journal of Matematik, vol. 4, no. 03, July 2016, pp. 373-9, doi:10.26637/mjm403/004.