Existence of solutions of \(q\)-functional integral equations with deviated argument
Downloads
DOI:
https://doi.org/10.26637/mjm403/004Abstract
In this paper, we study the existence of solutions for \(q\)-functional integral equations in Banach space \(C[0, T]\). The existence and uniqueness of solutions for the problems are proved by means of the Banach contraction principle.
Keywords:
Banach contraction principle, Deviated argument, existence, \(q\)-functional integral equationsMathematics Subject Classification:
534A08, 47H07, 47H10- Pages: 373-379
- Date Published: 01-07-2016
- Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
C. R. Adams, On the linear ordinary q-difference equation, Am. Math. Ser. II, 30, (1929) PP. $195-205$. DOI: https://doi.org/10.2307/1968274
M. H. Annaby and Z. S. Mansour, q-Fractional Calculus and Equations. Springer, Heidelberg, 2012. DOI: https://doi.org/10.1007/978-3-642-30898-7
T. M. Apostol, Mathematical Analysis, 2nd Edition, Addison-Weasley Publishing Company Inc., (1974).
A. Aral, V. Gupta, and R. P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, 2013. DOI: https://doi.org/10.1007/978-1-4614-6946-9
G. Bangerezako, An Introduction to $q$-Difference Equations. Preprint, Bujumbura, 2007.
R. D. Carmichael, The general theory of linear q-difference equations, Am. J. Math. 34, (1912)PP. 147-168. DOI: https://doi.org/10.2307/2369887
V. V. Eremin, A.A. Meldianov, The $q$-deformed harmonic oscillator, coherent states, and the uncertainty relation. Theor. Math. Phys. 147(2), 709715 (2006). Translation from Teor. Mat. Fiz. 147(2)(2006) PP.315-322 DOI: https://doi.org/10.1007/s11232-006-0072-y
T. Ernst, A Comprehensive Treatment of $q$-Calculus, Springer Basel, 2012. DOI: https://doi.org/10.1007/978-3-0348-0431-8
H. Exton, q-Hypergeometric Functions and Applications (Ellis-Horwood), Chichester, (1983).
K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, (1990) 243 pages. DOI: https://doi.org/10.1017/CBO9780511526152
G. M. Guerekata, A Cauchy Problem for some Fractional Abstract Differential Equation with Nonlocal Conditions, Nonlinear Analysis, No. 70, (2009), PP. 1873-1876. DOI: https://doi.org/10.1016/j.na.2008.02.087
F. H. Jackson, On $q$-functions and a certain difference operator. Trans. R. Soc. Edinb. 46, (1908)PP.253-281. DOI: https://doi.org/10.1017/S0080456800002751
F. H. Jackson, On q-definite integrals. Q. J. Pure Appl. Math. 41,(1910)PP.193-203 .
F. H. Jackson, q-Difference equations, Am. J. Math. 32,(1910)PP.305-314 . DOI: https://doi.org/10.2307/2370183
V. Kac and P. Cheung, Quantum Calculus. Springer, New York (2002). DOI: https://doi.org/10.1007/978-1-4613-0071-7
A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Prentice Hallinc, (1970).
A. Lavagno, PN, Swamy, $q$-Deformed structures and nonextensive statistics: a comparative study. Physica A 305(1-2), 310-315 (2002) Non extensive thermodynamics and physical applications (Villasimius, 2001) DOI: https://doi.org/10.1016/S0378-4371(01)00680-X
X. Li, Z. Han, S. Sun and H. lu, Boundary value problems for fractional $q$-difference equations with nonlocal conditions.Adv. Differ. Equ. 2014, Article ID 57 (2013). DOI: https://doi.org/10.1186/1687-1847-2014-57
T. E. Mason, On properties of the solution of linear $q$-difference equations with entire fucntion coefficients, Am. J. Math. 37,(1915) PP. 439-444 . DOI: https://doi.org/10.2307/2370216
O. Nica, IVP for First-Order Differential Systems with General Nonlocal Condition, Electronic Journal of differential equations, Vol. 2012, No. 74, (2012), PP. 1-15.
W. J. Triitzinsky, Analytic theory of linear q-difference equations, Acta Mathematica,61(1),(1933)PP.1-38 . DOI: https://doi.org/10.1007/BF02547785
D. Youm, q-deformed conformal quantum mechanics. Phys. Rev. D 62, 095009 (2000). DOI: https://doi.org/10.1103/PhysRevD.62.084002
- NA
Similar Articles
- Mustafa Çalişkan , Evren Ergün, The natural lift of the fixed centrode of a non-null curve in Minkowski 3-space , Malaya Journal of Matematik: Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.