Reciprocal graphs
Downloads
DOI:
https://doi.org/10.26637/mjm403/005Abstract
Eigenvalue of a graph is the eigenvalue of its adjacency matrix. A graph \(G\) is reciprocal if the reciprocal of each of its eigenvalue is also an eigenvalue of \(G\). The Wiener index \(W(G)\) of a graph \(G\) is defined by \(W(G)=\frac{1}{2} \sum_{d \in D} d\) where \(D\) is the distance matrix of \(G\). In this paper some new classes of reciprocal graphs and an upperbound for their energy are discussed. Pairs of equienergetic reciprocal graphs on every \(n \equiv\) \(0 \bmod (12)\) and \(n \equiv 0 \bmod (16)\) are constructed. The Wiener indices of some classes of reciprocal graphs are also obtained.
Keywords:
Eigenvalue, Energy, Reciprocal graphs, splitting graph, Wiener indexMathematics Subject Classification:
05C10- Pages: 380-387
- Date Published: 01-07-2016
- Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
R. Balakrishnan, The energy of a graph, Lin. Algebra Appl., 387 (2004), 287-295. DOI: https://doi.org/10.1016/j.laa.2004.02.038
K. Balińska, D.M. Cvetković, Z. Radosavljević, S. Simić, D. Stevanović, A Survey on integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 13 (2002), 42-65.
S. Barik, S. Pati, B.K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math., 21(2007), $47-56$. DOI: https://doi.org/10.1137/050624029
D.M. Cvetkovi?, M. Doob, H. Sachs, Spectra of Graphs-Theory and Applications, Academic Press, (1980).
D.M. Cvetković, I. Gutman, On spectral structure of graphs having the maximal eigenvalue not greater than two, Publ. Inst. Math., 18(1975), 39-45.
J.R. Dias, Properties and relationships of right-hand mirror-plane fragments and their eigenvectors : the concept of complementarity of molecular graphs, Mol. Phys., 88 (1996), 407-417. DOI: https://doi.org/10.1080/00268979650026424
J.R. Dias, Properties and Relationships of Conjugated Polyenes Having a Reciprocal Eigenvalue Spectrum Dendralene and Radialene Hydrocarbons, Cro. Chem.Acta, 77 (2004), 325-330.
J. Koolen, V. Moulton, Maximal energy graphs, Adv.Appl.Math., 26(2001), 47-52. DOI: https://doi.org/10.1006/aama.2000.0705
J. Koolen, V. Moulton, Maximal energy bipartite graphs, Graphs and Combin., 19(2003), 131-135. DOI: https://doi.org/10.1007/s00373-002-0487-7
G. Indulal, A. Vijayakumar, On a pair of equienergetic graphs, MATCH Commun. Math. Comput. Chem., 55(2006), 83 - 90.
G. Indulal, A. Vijayakumar, Energies of some non-regular graphs, J. Math. Chem. 42 (2007), 377–386. DOI: https://doi.org/10.1007/s10910-006-9108-7
G. Indulal, A. Vijayakumar, Some new integral graphs, Applicable Analysis and Discrete Mathematics,1 (2007), 420–426. DOI: https://doi.org/10.2298/AADM0702420I
G. Indulal, A. Vijayakumar, Equienergetic self-complementary graphs, Czechoslovak Math J. 58 (2008), 911919. DOI: https://doi.org/10.1007/s10587-008-0059-y
B. Mandal, M. Banerjee, A.K. Mukherjee, Wiener and Hosoya indices of reciprocal graphs, Mol. Phys., $103(2005), 2665-2674$. DOI: https://doi.org/10.1080/00268970500134714
B.J. McClelland, Properties of the latent roots of a matrix:the estimation of $pi-$ electron energy, J. Chem. Phys., $54(2)(1971), 640-643$. DOI: https://doi.org/10.1063/1.1674889
S. Nikolić, N. Trinajstić, M. Randić, Wiener index revisited, Chem. Phys. Lett., 33(2001), 319-321. DOI: https://doi.org/10.1016/S0009-2614(00)01367-1
H.S. Ramane, H.B. Walikar, S.B. Rao, B.D. Acharya, I. Gutman, P.R. Hampiholi, S.R. Jog, Equienergetic graphs, Krajugevac. J. Math., 26(2004), 5-13.
M. Randić, X. Guo, T. Oxley, H.K. Krishnapriyan, Wiener Matrix:Source of novel graph invarients, J. Chem. Inf. Comp. Sci., 33(5)(1993), 709-716. DOI: https://doi.org/10.1021/ci00015a008
E. Sampathkumar, H.B. Walikar, On the splitting graph of a graph, Karnatak Univ. J. Sci., 35/36 (1980-1981), 13-16.
J. Sarkar, A.K. Mukherjee, Graphs with reciprocal pairs of eigenvalues, Mol. Phys., 90(1997), 903-907 . DOI: https://doi.org/10.1080/00268979709482674
J.M. Steele, The Cauchy-Schwarz Master Class, Cambridge University Press (2004). DOI: https://doi.org/10.1017/CBO9780511817106
D. Stevanović, When is NEPS of graphs connected?, Linear Algebra Appl., 301(1999), 137-144. DOI: https://doi.org/10.1016/S0024-3795(99)00194-9
D. Stevanovi´ c,Energy and NEPS of graphs, Linear Multilinear Algebra, 53(2005), 67–74. DOI: https://doi.org/10.1080/03081080410001714705
- NA
Similar Articles
- K. Thilagavathi, K. Vijaya, N. Magesh, Certain properties of a subclass of harmonic convex functions of complex order defined by multiplier transformations , Malaya Journal of Matematik: Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.