Reciprocal graphs

Downloads

DOI:

https://doi.org/10.26637/mjm403/005

Abstract

Eigenvalue of a graph is the eigenvalue of its adjacency matrix. A graph G is reciprocal if the reciprocal of each of its eigenvalue is also an eigenvalue of G. The Wiener index W(G) of a graph G is defined by W(G)=12dDd where D is the distance matrix of G. In this paper some new classes of reciprocal graphs and an upperbound for their energy are discussed. Pairs of equienergetic reciprocal graphs on every n 0mod(12) and n0mod(16) are constructed. The Wiener indices of some classes of reciprocal graphs are also obtained.

Keywords:

Eigenvalue, Energy, Reciprocal graphs, splitting graph, Wiener index

Mathematics Subject Classification:

05C10
  • Pages: 380-387
  • Date Published: 01-07-2016
  • Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)

R. Balakrishnan, The energy of a graph, Lin. Algebra Appl., 387 (2004), 287-295. DOI: https://doi.org/10.1016/j.laa.2004.02.038

K. Balińska, D.M. Cvetković, Z. Radosavljević, S. Simić, D. Stevanović, A Survey on integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 13 (2002), 42-65.

S. Barik, S. Pati, B.K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math., 21(2007), $47-56$. DOI: https://doi.org/10.1137/050624029

D.M. Cvetkovi?, M. Doob, H. Sachs, Spectra of Graphs-Theory and Applications, Academic Press, (1980).

D.M. Cvetković, I. Gutman, On spectral structure of graphs having the maximal eigenvalue not greater than two, Publ. Inst. Math., 18(1975), 39-45.

J.R. Dias, Properties and relationships of right-hand mirror-plane fragments and their eigenvectors : the concept of complementarity of molecular graphs, Mol. Phys., 88 (1996), 407-417. DOI: https://doi.org/10.1080/00268979650026424

J.R. Dias, Properties and Relationships of Conjugated Polyenes Having a Reciprocal Eigenvalue Spectrum Dendralene and Radialene Hydrocarbons, Cro. Chem.Acta, 77 (2004), 325-330.

J. Koolen, V. Moulton, Maximal energy graphs, Adv.Appl.Math., 26(2001), 47-52. DOI: https://doi.org/10.1006/aama.2000.0705

J. Koolen, V. Moulton, Maximal energy bipartite graphs, Graphs and Combin., 19(2003), 131-135. DOI: https://doi.org/10.1007/s00373-002-0487-7

G. Indulal, A. Vijayakumar, On a pair of equienergetic graphs, MATCH Commun. Math. Comput. Chem., 55(2006), 83 - 90.

G. Indulal, A. Vijayakumar, Energies of some non-regular graphs, J. Math. Chem. 42 (2007), 377–386. DOI: https://doi.org/10.1007/s10910-006-9108-7

G. Indulal, A. Vijayakumar, Some new integral graphs, Applicable Analysis and Discrete Mathematics,1 (2007), 420–426. DOI: https://doi.org/10.2298/AADM0702420I

G. Indulal, A. Vijayakumar, Equienergetic self-complementary graphs, Czechoslovak Math J. 58 (2008), 911919. DOI: https://doi.org/10.1007/s10587-008-0059-y

B. Mandal, M. Banerjee, A.K. Mukherjee, Wiener and Hosoya indices of reciprocal graphs, Mol. Phys., $103(2005), 2665-2674$. DOI: https://doi.org/10.1080/00268970500134714

B.J. McClelland, Properties of the latent roots of a matrix:the estimation of $pi-$ electron energy, J. Chem. Phys., $54(2)(1971), 640-643$. DOI: https://doi.org/10.1063/1.1674889

S. Nikolić, N. Trinajstić, M. Randić, Wiener index revisited, Chem. Phys. Lett., 33(2001), 319-321. DOI: https://doi.org/10.1016/S0009-2614(00)01367-1

H.S. Ramane, H.B. Walikar, S.B. Rao, B.D. Acharya, I. Gutman, P.R. Hampiholi, S.R. Jog, Equienergetic graphs, Krajugevac. J. Math., 26(2004), 5-13.

M. Randić, X. Guo, T. Oxley, H.K. Krishnapriyan, Wiener Matrix:Source of novel graph invarients, J. Chem. Inf. Comp. Sci., 33(5)(1993), 709-716. DOI: https://doi.org/10.1021/ci00015a008

E. Sampathkumar, H.B. Walikar, On the splitting graph of a graph, Karnatak Univ. J. Sci., 35/36 (1980-1981), 13-16.

J. Sarkar, A.K. Mukherjee, Graphs with reciprocal pairs of eigenvalues, Mol. Phys., 90(1997), 903-907 . DOI: https://doi.org/10.1080/00268979709482674

J.M. Steele, The Cauchy-Schwarz Master Class, Cambridge University Press (2004). DOI: https://doi.org/10.1017/CBO9780511817106

D. Stevanović, When is NEPS of graphs connected?, Linear Algebra Appl., 301(1999), 137-144. DOI: https://doi.org/10.1016/S0024-3795(99)00194-9

D. Stevanovi´ c,Energy and NEPS of graphs, Linear Multilinear Algebra, 53(2005), 67–74. DOI: https://doi.org/10.1080/03081080410001714705

  • NA

Metrics

PDF views
96
Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202612
|

Published

01-07-2016

How to Cite

G. Indulal, and A.Vijayakumar. “Reciprocal Graphs”. Malaya Journal of Matematik, vol. 4, no. 03, July 2016, pp. 380-7, doi:10.26637/mjm403/005.