Interval criteria for oscillation of second-order impulsive delay differential equation with mixed nonlinearities
Downloads
DOI:
https://doi.org/10.26637/mjm403/008Abstract
We obtain interval oscillation criteria for the second-order impulsive delay differential equation
$$
\begin{aligned}
\left(r(t) \Phi_\alpha\left(x^{\prime}(t)\right)\right)^{\prime}+p(t) \Phi_\alpha(x(t-\tau))+\sum_{i=1}^n q_i(t) \Phi_{\beta_i}(x(t-\tau))\\=e(t), t \geq t_0, t \neq t_k \\
x\left(t_k^{+}\right)=a_k x\left(t_k\right), \quad x^{\prime}\left(t_k^{+}\right)=b_k x^{\prime}\left(t_k\right), k=1,2,3, \ldots
\end{aligned}
$$
The results obtained in this paper extend some of the existing results. We have given some examples to illustrate our results.
Keywords:
Interval oscillation, Impulse, Delay, Mixed nonlinearitiesMathematics Subject Classification:
34C10, 34K11- Pages: 404-420
- Date Published: 01-07-2016
- Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
R. P. Agarwal, D. R. Anderson and A.Zafer, Interval oscillation criteria for second-order forced delay dynamic equations with mixed nonlinearities, Comput. Math. Appl. 59 (2010), 997-993. DOI: https://doi.org/10.1016/j.camwa.2009.09.010
R. P. Agarwal and F. Karakoc, A survey on oscillation of impulsive delay differential equations, Comput. Math. Appl. 60 (2010), 1648-1685. DOI: https://doi.org/10.1016/j.camwa.2010.06.047
E. F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin (1961). DOI: https://doi.org/10.1007/978-3-642-64971-4
M. A. El- Sayed, An oscillation criterion for a forced second order linear differential equation, proc. Amer. Math. Soc. 118 (1993), 813-817. DOI: https://doi.org/10.1090/S0002-9939-1993-1154243-9
Z. Guo, X. Zhou and W-S Wang, Interval oscillation criteria for second-order mixed nonlinear impulsive differential equations with delay, Abstr. Appl. Anal. 2012 (2012), Article ID 351709, 23 pages. DOI: https://doi.org/10.1155/2012/351709
Z. Guo, X. Zhou and W-S Wang, Interval oscillation criteria for super-half-linear impulsive differential equations with delay, J. Appl. Math. 2012 (2012), Article ID 285051, 22 pages. DOI: https://doi.org/10.1155/2012/285051
G. H. Hardy, J. E. Littlewood and G.Polya, Inequalities, Cambridge University Press, Cambridge (1964).
M. Huang and W. Feng, Forced oscillations for second order delay differential equations with impulses, Comput. Math. Appl. 59 (2010), 18-30. DOI: https://doi.org/10.1016/j.camwa.2008.10.098
Q. Kong, Interval criteria for oscillation of second order linear ordinary differential equations, J. Math. Anal. Appl. 229 (1999), 258-270. DOI: https://doi.org/10.1006/jmaa.1998.6159
V. Lakshmikantham, D. D. Bainov and P. S. Simieonov, Theory of Impulsive Differential Equations, World Scientific Publishers, Singapore/New Jersey/ London (1989). DOI: https://doi.org/10.1142/0906
Q. Li and W-S. Cheung, Interval oscillation criteria for second-order forced delay differential equations under impulse effects, Electron. J. Differential Equations. 2013 (2013), No. 43, 1-11.
X. Liu and Z. Xu, Oscillation of a forced super-linear second order differential equation with impulses, Comput. Math. Appl. 53 (2007), 1740-1749. DOI: https://doi.org/10.1016/j.camwa.2006.08.040
X. Liu and Z. Xu, Oscillation criteria for a forced mixed type Emdon-Fowler equation with impulses, Appl. Math. Comput. 215 (2009), 283-291. DOI: https://doi.org/10.1016/j.amc.2009.04.072
V. D. Milman and A. D. Myshkis, On the stability of motion in the presence of impulses, Sib. Math. J. 1 $(1960), 233-237$
A. Özbekler and A. Zafer, Oscillation of solutions of second order mixed nonlinear differential equations under impulsive perturbations, Comput. Math. Appl. 61 (2011), 933-940. DOI: https://doi.org/10.1016/j.camwa.2010.12.041
Ch. G. Philos, Oscillation theorems for linear differential equations of second order, Arch. Math. 53 (1989), $482-492$. DOI: https://doi.org/10.1007/BF01324723
Y. G. Sun and J. S.W. Wong, Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities, J. Math. Anal. Appl. 334 (2007), 549-560. DOI: https://doi.org/10.1016/j.jmaa.2006.07.109
J. S. W. Wong, Oscillation criteria for a forced second order linear differential equation, J. Math. Anal. Appl. 231 (1999), 235-240. DOI: https://doi.org/10.1006/jmaa.1998.6259
- The authors thank the anonymous referee for his/her helpful suggestions. This work was supported by UGC-Special Assistance Programme(No.F.510/7/DRS-1/2016(SAP-1)) and R. Manjuram was supported by University Grants Commission, New Delhi 110 002, India (Grant No. F1-17.1/2013-14/RGNF-2013-14-SC- TAM-38915/(SA-III/Website)).
Similar Articles
- Pelda Evirgen, Mehmet Kucukaslan, Statistical extension some types of symmetrically continuity , Malaya Journal of Matematik: Vol. 11 No. 02 (2023): Malaya Journal of Matematik (MJM)
- R. Vembu, A. Bowrna, A generalization of natural density , Malaya Journal of Matematik: Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.