Semi-invariant submanifolds of a Kenmotsu manifold with a generalized almost \(r\)-contact structure admitting a semi-symmetric metric connection

Downloads

DOI:

https://doi.org/10.26637/mjm403/009

Abstract

We consider an almost \(r\)-contact Kenmotsu manifold admitting a semi-symmetric metric connection and study semi-invariant submanifolds of an almost \(r\)-contact Kenmotsu manifold endowed with a semi-symmetric meric connection. We obtain Gauss and Weingarten formuale for such a connection and also discuss the integrability conditions of the distributions on a generalized Kenmotsu manifold.

Keywords:

Kenmotsu manifolds, semi-invariant submanifolds, semi-symmetric metric connection, integrability conditions, parallel horizontal distribution, almost \(r\)-contact structures

Mathematics Subject Classification:

53C40, 53C25
  • Mobin Ahmad Department of Mathematics, faculty of science, Jazan University, Jazan, Kingdom of Saudi Arabia.
  • Abdul Haseeb Department of Mathematics, faculty of science, Jazan University, Jazan, Kingdom of Saudi Arabia.
  • Sheeba Rizvi Department of Mathematics, Integral University, Kursi Road, Lucknow, India.
  • Pages: 421-429
  • Date Published: 01-07-2016
  • Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)

M. Ahmad and J. B. Jun, On semi-invariant submanifolds of a nearly Kenmotsu manifold with a semisymmetric non-metric connection, Journal of chungcheong Math. Soc., 23(2) (2010), 257-266.

M. Ahmad, S. Rahman and M. D. Siddiqi, Semi-invariant submanifolds of a nearly Sasakian manifold endowed with a semi-symmetric metric connection, Bull. Allahabad Math. Soc., 25 (1) (2010), 23-33. DOI: https://doi.org/10.14403/jcms.2012.25.1.073

M. Ahmad, M. D. Siddiqi and J. P. Ojha, Semi-invariant submanifolds of a Kenmotsu manifold immersed in an almost r-contact structure admitting a quarter symmetric non-metric connection, J. Math. Comput. Sci. 2(4) (2012), 982-998.

M. Ahmad, Semi-invariant submanifolds of a nearly Kenmotsu manifold endowed with a semisymmetric semi-metric connection, Mathematicki Vesnik 62 (2010), 189-198.

A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company, Holland, 1986. DOI: https://doi.org/10.1007/978-94-009-4604-0

A. Bejancu, On semi-invariant submanifolds of an almost contact metric manifold, A. Stiint. Univ. AI. I, Cuza Iasi Mat. 27 (supplement) (1981), 17-21.

L. S. Das, M. Ahmad and A. Haseeb, Semi-invariant submanifolds of a nearly Sasakian manifold endowed with a semi-symmetric non-metric connection, Journal of Applied Analysis, 17(1) (2011), 119-130. DOI: https://doi.org/10.1515/jaa.2011.007

A. Friedmann and J. A. Schouten, Uber die geometric der halbsymmetrischen, Ubertragung Math. Zeitschr. 21 (1924), 211-223. DOI: https://doi.org/10.1007/BF01187468

S. Golab, On semi-symmetric and quarter symmetric linear connections, Tensor (N. S.) 29 (1975), $249-254$.

H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc., 34(1932), 27-50. DOI: https://doi.org/10.1112/plms/s2-34.1.27

J. B. Jun and M. Ahmad, Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a semi-symmetric metric connection, Bull. Korean Math. Soc., 46 (5)(2009), 895-903. DOI: https://doi.org/10.4134/BKMS.2009.46.5.895

K. Matsumoto, M. H. Shahid and I. Mihai, Semi-invariant submanifolds of certain almost contact manifolds, Bull. Yamagata Univ. Nature. Sci. 13 (1994), 183-192.

R. Nivas and S. Yadav, Semi-invariant submanifolds of a Kenmotsu manifold with generalized almost r-contact structure, J. T. S., 3 (2009), 125-135. DOI: https://doi.org/10.56424/jts.v3i00.9977

K. Yano, On semi-symmetric metric connections, Rev. Roumainae Math. Pures Appl., 15(1970), $1579-1586$.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2016

How to Cite

Mobin Ahmad, Abdul Haseeb, and Sheeba Rizvi. “Semi-Invariant Submanifolds of a Kenmotsu Manifold With a Generalized Almost \(r\)-Contact Structure Admitting a Semi-Symmetric Metric Connection”. Malaya Journal of Matematik, vol. 4, no. 03, July 2016, pp. 421-9, doi:10.26637/mjm403/009.