Semi-invariant submanifolds of a Kenmotsu manifold with a generalized almost \(r\)-contact structure admitting a semi-symmetric metric connection
Downloads
DOI:
https://doi.org/10.26637/mjm403/009Abstract
We consider an almost \(r\)-contact Kenmotsu manifold admitting a semi-symmetric metric connection and study semi-invariant submanifolds of an almost \(r\)-contact Kenmotsu manifold endowed with a semi-symmetric meric connection. We obtain Gauss and Weingarten formuale for such a connection and also discuss the integrability conditions of the distributions on a generalized Kenmotsu manifold.
Keywords:
Kenmotsu manifolds, semi-invariant submanifolds, semi-symmetric metric connection, integrability conditions, parallel horizontal distribution, almost \(r\)-contact structuresMathematics Subject Classification:
53C40, 53C25- Pages: 421-429
- Date Published: 01-07-2016
- Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
M. Ahmad and J. B. Jun, On semi-invariant submanifolds of a nearly Kenmotsu manifold with a semisymmetric non-metric connection, Journal of chungcheong Math. Soc., 23(2) (2010), 257-266.
M. Ahmad, S. Rahman and M. D. Siddiqi, Semi-invariant submanifolds of a nearly Sasakian manifold endowed with a semi-symmetric metric connection, Bull. Allahabad Math. Soc., 25 (1) (2010), 23-33. DOI: https://doi.org/10.14403/jcms.2012.25.1.073
M. Ahmad, M. D. Siddiqi and J. P. Ojha, Semi-invariant submanifolds of a Kenmotsu manifold immersed in an almost r-contact structure admitting a quarter symmetric non-metric connection, J. Math. Comput. Sci. 2(4) (2012), 982-998.
M. Ahmad, Semi-invariant submanifolds of a nearly Kenmotsu manifold endowed with a semisymmetric semi-metric connection, Mathematicki Vesnik 62 (2010), 189-198.
A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company, Holland, 1986. DOI: https://doi.org/10.1007/978-94-009-4604-0
A. Bejancu, On semi-invariant submanifolds of an almost contact metric manifold, A. Stiint. Univ. AI. I, Cuza Iasi Mat. 27 (supplement) (1981), 17-21.
L. S. Das, M. Ahmad and A. Haseeb, Semi-invariant submanifolds of a nearly Sasakian manifold endowed with a semi-symmetric non-metric connection, Journal of Applied Analysis, 17(1) (2011), 119-130. DOI: https://doi.org/10.1515/jaa.2011.007
A. Friedmann and J. A. Schouten, Uber die geometric der halbsymmetrischen, Ubertragung Math. Zeitschr. 21 (1924), 211-223. DOI: https://doi.org/10.1007/BF01187468
S. Golab, On semi-symmetric and quarter symmetric linear connections, Tensor (N. S.) 29 (1975), $249-254$.
H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc., 34(1932), 27-50. DOI: https://doi.org/10.1112/plms/s2-34.1.27
J. B. Jun and M. Ahmad, Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a semi-symmetric metric connection, Bull. Korean Math. Soc., 46 (5)(2009), 895-903. DOI: https://doi.org/10.4134/BKMS.2009.46.5.895
K. Matsumoto, M. H. Shahid and I. Mihai, Semi-invariant submanifolds of certain almost contact manifolds, Bull. Yamagata Univ. Nature. Sci. 13 (1994), 183-192.
R. Nivas and S. Yadav, Semi-invariant submanifolds of a Kenmotsu manifold with generalized almost r-contact structure, J. T. S., 3 (2009), 125-135. DOI: https://doi.org/10.56424/jts.v3i00.9977
K. Yano, On semi-symmetric metric connections, Rev. Roumainae Math. Pures Appl., 15(1970), $1579-1586$.
- NA
Similar Articles
- Renu Chaudhary, Dwijendra N Pandey, Existence results for nonlinear fractional differential equation with nonlocal integral boundary conditions , Malaya Journal of Matematik: Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.