Riemann-Liouville fractional Hermite-Hadamard inequalities for differentiable \(\lambda\phi\)-preinvex functions
Downloads
DOI:
https://doi.org/10.26637/mjm403/010Abstract
In this work, we demonstrate Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via once differentiable and twice differentiable defined using \(\lambda\phi\)-preinvex functions.
Keywords:
Fractional Hermite-Hadamard ineauqualities, Riemann-Liouville Fractional Integral, \(\phi\)-preinvex functionsMathematics Subject Classification:
26A33, 26D15, 41A55- Pages: 430-437
- Date Published: 01-07-2016
- Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
Baleanu, D, Machado, JAT, Luo, ACJ: Fractional Dynamics and Control. Springer, New York (2012) DOI: https://doi.org/10.1007/978-1-4614-0457-6
Diethelm, K: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics.(2010) DOI: https://doi.org/10.1007/978-3-642-14574-2
Kilbas, AA, Srivastava, HM , Trujillo, JJ: Theory and Applications of Fractional Differential Equations.Elsevier, Amsterdam (2006)
Lakshmikantham, V, Leela, S, Devi, JV: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)
Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)
Michalski, MW: Derivates of noninteger Order and Their Applications. Diss. Math. CCCXXVIII. Inst. Math., Polish Acad.Sci.(1993)
Podlubny, I: Fractional Differential Equations.Academic Press, San Diego (1999)
Tarasov, VE. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media.Springer, Berlin (2011) DOI: https://doi.org/10.1007/978-3-642-14003-7_11
DiDonato, AR, Jarnagin, MP: The efficient calculation of the incomplete beta-function ratio for halfinteger values of the parameters. Math. Comput. 21, 652-662 (1967) DOI: https://doi.org/10.1090/S0025-5718-1967-0221730-X
Tunç M.,and Yildirim, H.,On MT-convexity, http://arxiv.org/pdf/1205.5453.pdf.(2012).(preprint)
Omotoyinbo, O. and Mogbodemu, A., Some New Hermite-Hadamard Integral inequalities for convex functions, International Journal of Science and Innovation Technology. 1(1), (2014), 001-012.
Sarikaya, MZ, Set, E, Yaldiz, H, Başak, N: Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities. Math.Comput. Model. 57, 2403-2407(2013) DOI: https://doi.org/10.1016/j.mcm.2011.12.048
Wang, J, Li, X, Feckan, M, Zhou, Y: Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Appl. Anal. (2012).doi: 10.1080/00036811.2012.727986 DOI: https://doi.org/10.1080/00036811.2012.727986
Deng, J, Wang, J:Fractional Hermite-Hadamard inequalities for $(alpha, m)$-logarithmically convex functions.J.Inequal.Appl.2013, Article ID 364(2013) DOI: https://doi.org/10.1186/1029-242X-2013-364
Wei-Dong Jiang, Da-Wei Niu, Feng Qi: Some Fractional Inequalties of Hermite-Hadamard type for $r$ $varphi$-Preinvex Functions, Tamkang Journal of Mathematics, Vol. 45, No. 1, 31-38, 2014. DOI: https://doi.org/10.5556/j.tkjm.45.2014.1261
- NA
Similar Articles
- V. Muthulakshmi, R. Manjuram, Interval criteria for oscillation of second-order impulsive delay differential equation with mixed nonlinearities , Malaya Journal of Matematik: Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.