Erratum: Certain properties of a subclass of harmonic convex functions of complex order defined by multiplier transformations-Malaya J. Mat. 4(3)2016, 362-372
Downloads
DOI:
https://doi.org/10.26637/mjm403/012Abstract
In the paper entitled Certain properties of a subclass of harmonic convex functions of complex order defined by Multiplier transformations- Malaya J. Mat. 4(3)2016, 362-372, the presentation of definition of modified Multiplier transformation of harmonic function \(f=h+\bar{g}\) as given below.
$$
\begin{aligned}
I_\gamma^0 f(z)=D^0 f(z)=h(z)+\overline{g(z)} \\
I_\gamma^1 f(z)=\frac{\gamma D^0 f(z)+D^1 f(z)}{\gamma+1} \\
I_\gamma^n f(z)=I_\gamma^1\left(I_\gamma^{n-1} f(z)\right),\left(n \in N_0\right) \\
I_\gamma^n f(z)=z+\sum_{k=2}^{\infty}\left(\frac{k+\gamma}{1+\gamma}\right)^n a_k z^k+(-1)^n \sum_{k=1}^{\infty}\left(\frac{k-\gamma}{1+\gamma}\right)^n b_k z^k
\end{aligned}
$$
Also if \(f\) is given, then,
\begin{align*}
&I_\gamma^n f(z)=f \widetilde{*} \underbrace{\left(\phi_1(z)+\overline{\phi_2(z)}\right) \widetilde{\ldots \ldots *}\left(\phi_1(z)+\overline{\left.\phi_2(z)\right)}\right.}_{n-\text { times }}\\&=h * \underbrace{\left(\phi _ { 1 } ( z ) * \ldots \left(\phi_1(z)\right.\right.}_{n-\text { times }}+\overline{g+\underbrace{\left(\phi_2(z) * \ldots\left(\phi_2(z)\right)\right)}_{n-\text { times }}},
\end{align*}
where \(*\) denotes the usual Hadamard product or convolution of power series and
$$
\phi_1(z)=\frac{(1+\gamma) z-\gamma z^2}{(1+\gamma)(1-z)^2}, \phi_2(z)=\frac{(\gamma-1) z-\gamma z^2}{(1+\gamma)(1-z)^2}
$$
is taken from the article by Yasar and S. Yalçin [1].
Keywords:
Harmonic convex functionsMathematics Subject Classification:
31A05- Pages: 443-443
- Date Published: 01-07-2016
- Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
E. Yasar and S. Yalc ¸in, Certain properties of a subclass of harmonic functions, Appl. Math. Inf. Sci., 7(5)(2013), 1749-1753. DOI: https://doi.org/10.12785/amis/070512
- NA
Similar Articles
- Sümeyye ERMEYDAN, Hüseyin YILDIRIM, Riemann-Liouville fractional Hermite-Hadamard inequalities for differentiable \(\lambda\phi\)-preinvex functions , Malaya Journal of Matematik: Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.