Caratheodory's theorem for B1-convex sets

Downloads

DOI:

https://doi.org/10.26637/mjm403/013

Abstract

In this article, our main concept is B1-convexity that is a new abstract convexity type. For the B1-convex sets, Caratheodory's Theorem which is one of the most important results in convexity theory is proved and its corollary is given.

Keywords:

Caratheodory’s Theorem, abstract convexity, B1 − convexity , B1 − convex sets

Mathematics Subject Classification:

52A20, 52A35, 52A05
  • G. Adilov Department of Mathematics, Faculty of Education, Akdeniz University, Dumlupinar Boulevard 07058, Campus, Antalya, Turkey.
  • I. Yesilce Department of Mathematics, Faculty of Science and Letters, Mersin University, Ciftlikkoy Campus, 33343, Mersin, Turkey.
  • Pages: 444-447
  • Date Published: 01-07-2016
  • Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)

G. Adilov and I. Yesilce, $mathbb{B}^{-1}$-convex Sets and $mathbb{B}^{-1}$-measurable Maps, Numer. Funct. Anal. Optim., 33(2)(2012), 131-141. DOI: https://doi.org/10.1080/01630563.2011.618960

G. Adilov and I. Yesilce, On Generalization of the Concept of Convexity, Hacet. J. Math. Stat., 41(5) (2012), 723-730.

W. Briec, Q. B. Liang, On Some Semilattice Structures for Production Technologies, European J. Oper. Res. 215 (2011), 740-749. DOI: https://doi.org/10.1016/j.ejor.2011.06.012

S. Kemali, I. Yesilce, G. Adilov, B-convexity, $mathbb{B}^{-1}$-convexity, and Their Comparison, Numer. Funct. Anal. Optim., 36(2) (2015), 133-146. DOI: https://doi.org/10.1080/01630563.2014.970641

A. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic Publishers, Boston Dordrecht-London, (2000). DOI: https://doi.org/10.1007/978-1-4757-3200-9

I. Singer, Abstract Convex Analysis, John Wiley & Sons., New York, (1997).

M. L. J. Van De Vel, Theory of Convex Structures, North Holland Mathematical Library, 50. North Holland Publishing Co., Amsterdam, (1993).

G. Tinaztepe, I. Yesilce and G. Adilov, Separation of $mathbb{B}^{-1}$-convex Sets by $mathbb{B}^{-1}$-measurable Maps, J. Convex Anal. 21(2) (2014), 571-580.

  • NA

Metrics

PDF views
66
Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20266.0
|

Published

01-07-2016

How to Cite

G. Adilov, and I. Yesilce. “Caratheodory’s Theorem for B1-Convex Sets”. Malaya Journal of Matematik, vol. 4, no. 03, July 2016, pp. 444-7, doi:10.26637/mjm403/013.