Caratheodory's theorem for \(\mathbb{B}^{-1}\)-convex sets
Downloads
DOI:
https://doi.org/10.26637/mjm403/013Abstract
In this article, our main concept is \(\mathbb{B}^{-1}\)-convexity that is a new abstract convexity type. For the \(\mathbb{B}^{-1}\)-convex sets, Caratheodory's Theorem which is one of the most important results in convexity theory is proved and its corollary is given.
Keywords:
Caratheodory’s Theorem, abstract convexity, \(B^{ − 1}\) − convexity , \(B ^{− 1}\) − convex setsMathematics Subject Classification:
52A20, 52A35, 52A05- Pages: 444-447
- Date Published: 01-07-2016
- Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
G. Adilov and I. Yesilce, $mathbb{B}^{-1}$-convex Sets and $mathbb{B}^{-1}$-measurable Maps, Numer. Funct. Anal. Optim., 33(2)(2012), 131-141. DOI: https://doi.org/10.1080/01630563.2011.618960
G. Adilov and I. Yesilce, On Generalization of the Concept of Convexity, Hacet. J. Math. Stat., 41(5) (2012), 723-730.
W. Briec, Q. B. Liang, On Some Semilattice Structures for Production Technologies, European J. Oper. Res. 215 (2011), 740-749. DOI: https://doi.org/10.1016/j.ejor.2011.06.012
S. Kemali, I. Yesilce, G. Adilov, B-convexity, $mathbb{B}^{-1}$-convexity, and Their Comparison, Numer. Funct. Anal. Optim., 36(2) (2015), 133-146. DOI: https://doi.org/10.1080/01630563.2014.970641
A. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic Publishers, Boston Dordrecht-London, (2000). DOI: https://doi.org/10.1007/978-1-4757-3200-9
I. Singer, Abstract Convex Analysis, John Wiley & Sons., New York, (1997).
M. L. J. Van De Vel, Theory of Convex Structures, North Holland Mathematical Library, 50. North Holland Publishing Co., Amsterdam, (1993).
G. Tinaztepe, I. Yesilce and G. Adilov, Separation of $mathbb{B}^{-1}$-convex Sets by $mathbb{B}^{-1}$-measurable Maps, J. Convex Anal. 21(2) (2014), 571-580.
- NA
Similar Articles
- A.R. Latheesh Kumar, V. Anil Kumar, A note on global bipartite domination in graphs , Malaya Journal of Matematik: Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.