Caratheodory's theorem for \(\mathbb{B}^{-1}\)-convex sets

Downloads

DOI:

https://doi.org/10.26637/mjm403/013

Abstract

In this article, our main concept is \(\mathbb{B}^{-1}\)-convexity that is a new abstract convexity type. For the \(\mathbb{B}^{-1}\)-convex sets, Caratheodory's Theorem which is one of the most important results in convexity theory is proved and its corollary is given.

Keywords:

Caratheodory’s Theorem, abstract convexity, \(B^{ − 1}\) − convexity , \(B ^{− 1}\) − convex sets

Mathematics Subject Classification:

52A20, 52A35, 52A05
  • G. Adilov Department of Mathematics, Faculty of Education, Akdeniz University, Dumlupinar Boulevard 07058, Campus, Antalya, Turkey.
  • I. Yesilce Department of Mathematics, Faculty of Science and Letters, Mersin University, Ciftlikkoy Campus, 33343, Mersin, Turkey.
  • Pages: 444-447
  • Date Published: 01-07-2016
  • Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)

G. Adilov and I. Yesilce, $mathbb{B}^{-1}$-convex Sets and $mathbb{B}^{-1}$-measurable Maps, Numer. Funct. Anal. Optim., 33(2)(2012), 131-141. DOI: https://doi.org/10.1080/01630563.2011.618960

G. Adilov and I. Yesilce, On Generalization of the Concept of Convexity, Hacet. J. Math. Stat., 41(5) (2012), 723-730.

W. Briec, Q. B. Liang, On Some Semilattice Structures for Production Technologies, European J. Oper. Res. 215 (2011), 740-749. DOI: https://doi.org/10.1016/j.ejor.2011.06.012

S. Kemali, I. Yesilce, G. Adilov, B-convexity, $mathbb{B}^{-1}$-convexity, and Their Comparison, Numer. Funct. Anal. Optim., 36(2) (2015), 133-146. DOI: https://doi.org/10.1080/01630563.2014.970641

A. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic Publishers, Boston Dordrecht-London, (2000). DOI: https://doi.org/10.1007/978-1-4757-3200-9

I. Singer, Abstract Convex Analysis, John Wiley & Sons., New York, (1997).

M. L. J. Van De Vel, Theory of Convex Structures, North Holland Mathematical Library, 50. North Holland Publishing Co., Amsterdam, (1993).

G. Tinaztepe, I. Yesilce and G. Adilov, Separation of $mathbb{B}^{-1}$-convex Sets by $mathbb{B}^{-1}$-measurable Maps, J. Convex Anal. 21(2) (2014), 571-580.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2016

How to Cite

G. Adilov, and I. Yesilce. “Caratheodory’s Theorem for \(\mathbb{B}^{-1}\)-Convex Sets”. Malaya Journal of Matematik, vol. 4, no. 03, July 2016, pp. 444-7, doi:10.26637/mjm403/013.