Fractional integral Chebyshev inequality without synchronous functions condition
Downloads
DOI:
https://doi.org/10.26637/mjm403/014Abstract
In this paper, we use the Riemann-Liouville fractional integrals to establish some new integral inequalities related to the Chebyshev inequality in the case where the synchronicity of the given functions is replaced by another condition. This paper generalises some recent results in the paper of [C.P. Niculescu and I. Roventa: An extension of Chebyshev’s algebraic inequality, Math. Reports, 2013].
Keywords:
Integral inequalities, Riemann-Liouville integral, Chebyshev inequalityMathematics Subject Classification:
26D10, 26A33- Pages: 448-452
- Date Published: 01-07-2016
- Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
S. Belarbi, Z. Dahmani: On some new fractional integral inequalities. JIPAM Journal, 10(03), (2009), 1-9. DOI: https://doi.org/10.26637/mjm103/001
P.L. Chebyshev: Sur les expressions approximatives des integrales definies par les autres prises entre les memes limite. Proc. Math. Soc. Charkov, 2, (1882), 93-98.
Z. Dahmani: New inequalities in fractional integrals. International Journal of Nonlinear Sciences, 9(4), $(2010), 493-497$.
Z. Dahmani: About some integral inequalities using Riemann-Liouville integrals. General Mathematics. $20(4),(2012), 63-69$
Z. Dahmani, O. Mechouar, S. Brahami: Certain inequalities related to the Chebyshev's functional involving Riemann-Liouville operator. Bulletin of Mathematical Analysis and Applications 3 (4), (2011), 38-44.
Z. Dahmani, L. Tabharit: On weighted Gruss type inequalities via fractional integrals. JARPM, Journal of Advanced Research in Pure Mathematics, 2(4), (2010), 31-38. DOI: https://doi.org/10.5373/jarpm.392.032110
N. Elezovic, L. Marangunic, G. Pecaric: Some improvements of Gruss Type inequality. J. Math. Inequal. $1(3),(2007), 425-436$. DOI: https://doi.org/10.7153/jmi-01-36
R. Gorenflo, F. Mainardi: Fractional calculus: integral and differential equations of fractional order. Springer Verlag, Wien, (1997), 223-276 DOI: https://doi.org/10.1007/978-3-7091-2664-6_5
S.M. Malamud: Some complements to the Jenson and Chebyshev inequalities and a problem of W. Walter, Proc. Amer. Math. Soc., 129(9), (2001), 2671-2678. DOI: https://doi.org/10.1090/S0002-9939-01-05849-X
D.S. Mitrinovic: Analytic inequalities. Springer Verlag. Berlin, (1970). DOI: https://doi.org/10.1007/978-3-642-99970-3
C.P. Niculescu, I. Roventa: An extention of Chebyshev's algebric inequality. Math. Reports 15 (65), (2013), $91-95$
B.G. Pachpatte: A note on Chebyshev-Grüss type inequalities for differential functions. Tamsui Oxford Journal of Mathematical Sciences, 22(1), (2006), 29-36.
M.Z. Sarikaya, N. Aktan, H. Yildirim: On weighted Chebyshev-Gruss like inequalities on time scales, J. Math. Inequal., 2(2), (2008), 185-195. DOI: https://doi.org/10.7153/jmi-02-17
M.Z. Sarikaya, A. Saglam, and H. Yildirim: On generalization of Chebysev type inequalities, Iranian J. of Math. Sci. and Inform., 5(1), (2010), 41-48.
M.Z. Sarikaya, M.E. Kiris: On Ostrowski type inequalities and Chebyshev type inequalities with applications. Filomat, 29(8), (2015), 123-130. DOI: https://doi.org/10.2298/FIL1508695K
E. Set, M.Z. Sarikaya, F. Ahmad: A generalization of Chebyshev type inequalities for first defferentiable mappings. Miskolc Mathematical Notes, 12(2), (2011), 245-253. DOI: https://doi.org/10.18514/MMN.2011.338
- NA
Similar Articles
- Zeynep Sanlı, Simpson type Katugampola fractional integral inequalities via Harmonic convex functions , Malaya Journal of Matematik: Vol. 10 No. 04 (2022): Malaya Journal of Matematik (MJM)
- K. Thilagavathi, K. Vijaya, N. Magesh, Certain properties of a subclass of harmonic convex functions of complex order defined by multiplier transformations , Malaya Journal of Matematik: Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
- K. Thilagavathi , K. Vijaya, N. Magesh, Erratum: Certain properties of a subclass of harmonic convex functions of complex order defined by multiplier transformations-Malaya J. Mat. 4(3)2016, 362-372 , Malaya Journal of Matematik: Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
- Jayaraman Sivapalan, Nanjundan Magesh, Samy Murthy, Certain subclasses of harmonic starlike functions associated with \(q\)− Mittag-Leffler function , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.