An efficient modification of PIM by using Chebyshev polynomials
Downloads
DOI:
https://doi.org/10.26637/mjm403/015Abstract
In this article, an efficient modification of the Picard iteration method (PIM) is presented by using Chebyshev polynomials. Special attention is given to study the convergence of the proposed method. The proposed modification is tested for some examples to demonstrate reliability and efficiency of the introduced method. A comparison between our numerical results against the conventional numerical method, fourth-order Runge-Kutta method (RK4) is given. From the presented examples, we found that the proposed
method can be applied to wide class of non-linear ordinary differential equations.
Keywords:
Picard iteration method, Chebyshev polynomials, Runge-Kutta method, Convergence analysisMathematics Subject Classification:
65N20, 41D15- Pages: 453-462
- Date Published: 01-07-2016
- Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
S. Abbasbandy and M. T. Darvishi, A numerical solution of Burger's equation by modified Adomian method, Applied Mathematics and Computation 163(2005), 1265-1272. DOI: https://doi.org/10.1016/j.amc.2004.04.061
R. P. Agarwal, M. Meehan and D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press, New York, 2001. DOI: https://doi.org/10.1017/CBO9780511543005
J. H. He, Variational iteration method for autonomous ordinary differential systems, Applied Mathematics and Computation 114(2-3)(2000), 115-123. DOI: https://doi.org/10.1016/S0096-3003(99)00104-6
W. Kelley and A. Petterson, The Theory of Differential Equations: Classical and Qualitative, Pearson Edu cation Inc., Upper Saddle River, NJ, 2004.
M. M. Khader, On the numerical solutions for chemical kinetics system using Picard-Padé technique, Journal of King Saud University-Engineering Sciences 25(2013), 97-103. DOI: https://doi.org/10.1016/j.jksues.2012.05.005
M. M. Khader, Introducing an efficient modification of the homotopy perturbation method by using Chebyshev polynomials, Arab J. of Mathematical Sciences 18(2012), 61-71.
M. M. Khader, On the numerical solutions for the fractional diffusion equation, Communications in Nonlinear Science and Numerical Simulation 16(2011), 2535-2542. DOI: https://doi.org/10.1016/j.cnsns.2010.09.007
M. M. Khader, Introducing an efficient modification of the VIM by using Chebyshev polynomials, Application and Applied Mathematics: An International Journal 7(2012), no. 1, 283-299. DOI: https://doi.org/10.1016/j.ajmsc.2011.09.001
M. M. Khader and R. F. Al-Bar, Application of Picard-Padé technique for obtaining the exact solution of 1-D hyperbolic telegraph equation and coupled system of Burger's equations, Global Journal of Pure and Applied Mathematics 7(2011), no. 2, 173-190.
M. M. Khader and R. F. Al-Bar, Approximate method for studying the waves propagating along the interface between Air-water, Mathematical Problems in Engineering 2011, Article ID 147327, 21 pages, 2011. DOI: https://doi.org/10.1155/2011/147327
M. M. Khader, T. S. EL Danaf and A. S. Hendy, A computational matrix method for solving systems of high order fractional differential equations, Applied Mathematical Modelling 37(2013), 4035-4050. DOI: https://doi.org/10.1016/j.apm.2012.08.009
E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, New York, 1989.
A. H. Nayfeh, Perturbation Methods, John Wiley & Sons, New York, 1973.
J. I. Ramos, On the Picard-Lindelof method for nonlinear second-order differential equations, Applied Mathematics and Computation 203(2008), 238-242. DOI: https://doi.org/10.1016/j.amc.2008.04.029
J. I. Ramos, A non-iterative derivative-free method for nonlinear ordinary differential equations, Applied Mathematics and Computation 203(2008), 672-678. DOI: https://doi.org/10.1016/j.amc.2008.05.015
J. I. Ramos, Picard's iterative method for nonlinear advection-reaction-diffusion equations, Applied Mathematics and Computation 215(2009), 1526-1536. DOI: https://doi.org/10.1016/j.amc.2009.07.004
M. A. Snyder, Chebyshev Methods in Numerical Approximation, Prentice-Hall, Inc. Englewood Cliffs, N. J. 1966.
N. H. Sweilam and M. M. Khader, Variational iteration method for one dimensional nonlinear thermoelasticity, Chaos, Solitons and Fractals 32(2007), 145-149. DOI: https://doi.org/10.1016/j.chaos.2005.11.028
N. H. Sweilam and M. M. Khader, On the convergence of VIM for nonlinear coupled system of partial differential equations, Int. J. of Computer Maths. 87(2010), no. 5, 1120-1130. DOI: https://doi.org/10.1080/00207160903124959
N. H. Sweilam and M. M. Khader, Exact solutions of some coupled nonlinear partial differential equations using the homotopy perturbation method, Computers and Mathematics with Applications 58(2009), 2134-2141. DOI: https://doi.org/10.1016/j.camwa.2009.03.059
N. H. Sweilam and M. M. Khader, Semi exact solutions for the bi-harmonic equation using homotopy analysis method, World Applied Sciences Journal 13(2011), 1-7.
N. H. Sweilam, M. M. Khader and R. F. Al-Bar, Numerical studies for a multi-order fractional differential equation, Physics Letters A 371(2007), 26-33. DOI: https://doi.org/10.1016/j.physleta.2007.06.016
A. M. Wazwaz, A comparison between Adomian decomposition method and Taylor series method in the series solution, Applied Mathematics and Computation 97(1998), 37-44. DOI: https://doi.org/10.1016/S0096-3003(97)10127-8
- NA
Similar Articles
- G. Adilov, I. Yesilce, Caratheodory's theorem for \(\mathbb{B}^{-1}\)-convex sets , Malaya Journal of Matematik: Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.