Zagreb indices of a graph and its common neighborhood graph

Downloads

DOI:

https://doi.org/10.26637/mjm403/017

Abstract

A complete set of relations is established between the first and second Zagreb index of a graph and of its congraph. Formulas for the Zagreb indices of several derived graphs are also obtained.

Keywords:

Vertex degree, Zagreb indices, Common neighborhood graph

Mathematics Subject Classification:

05C07, 05C90
  • Dae-Won Lee Department of Mathematics, Yonsei University, 50 Yonsei-Ro, Seoul 120-749, Republic of Korea.
  • Shaban Sedghi Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
  • Nabi Shobe Department of Mathematics, Babol Branch, Islamic Azad University, Babol, Iran.
  • Pages: 468-475
  • Date Published: 01-07-2016
  • Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)

A. Alwardi, B. Arsić, I. Gutman, N. D. Soner, The common neighborhood graph and its energy, Iran. J. Math. Sci. Inf. 7(2) (2012) 1-8.

A. Alwardi, N. D. Soner, I. Gutman, On the common-neighborhood energy of a graph, Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.) 143 (2011) 49-59.

A. S. Bonifácio, R. R. Rosa, I. Gutman, N. M. M. de Abreu, Complete common neighborhood graphs, Proceedings of Congreso Latino-Iberoamericano de Investigación Operativa & Simpósio Brasileiro de Pesquisa Operacional. (2012) 4026-4032.

K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. $52(2004)$ 103-112.

T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011) 613-626.

B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190. DOI: https://doi.org/10.1007/s10910-015-0480-z

B. Furtula, I. Gutman, Ž. Kovijanić Vukićević, G. Lekishvili, G. Popivoda, On an old/new degree-based topological index, Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.) 148 (2015) 19-31.

C. M. da Fonseca, M. Ghebleh, A. Kanso, D. Stevanović, Counterexamples to a conjecture on Wiener index of common neighborhood graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 333-338.

I. Gutman, Degree-based topological indices, Croat. Chem. Acta. 86 (2013) 351-361. DOI: https://doi.org/10.5562/cca2294

I. Gutman, On the origin of two degree-based topological indices, Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.) $146(2014)$ 39-52.

I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.

I. Gutman, B. Furtula, Z. Kovijan'c Vukićević, G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5-16.

S. Hossein-Zadeh, A. Iranmanesh, A. Hamzeh, M. A. Hosseinzadeh, On the common neighborhood graphs, El. Notes Discr. Math. 45 (2014) 51-56. DOI: https://doi.org/10.1016/j.endm.2013.11.011

M. Knor, B. Lužar, R. Škrekovski, I. Gutman, On Wiener index of common neighborhood graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 321-332.

X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.

G. B. A. Xavier, E. Suresh, I. Gutman, Counting relations for general Zagreb indices, Kragujevac J. Math. 38 (2014) 95-103. DOI: https://doi.org/10.5937/KgJMath1401095X

  • NA

Metrics

Metrics Loading ...

Published

01-07-2016

How to Cite

Dae-Won Lee, Shaban Sedghi, and Nabi Shobe. “Zagreb Indices of a Graph and Its Common Neighborhood Graph”. Malaya Journal of Matematik, vol. 4, no. 03, July 2016, pp. 468-75, doi:10.26637/mjm403/017.