\(\theta\)-local function and \( \psi_\theta\)-operator

Downloads

DOI:

https://doi.org/10.26637/mjm403/018

Abstract

In this paper, we introduce the notion of a \(\theta\)-local function and investigate some of their properties. Also, we define two operators ()\(^{* \theta}\) and \(\psi_\theta\) in an ideal topological space.

Keywords:

θ-local function, θ-compatible

Mathematics Subject Classification:

54A05
  • M. Anandhi Department of Mathematics, L.R.G. Government Arts College For Women, Tirupur-641004, Tamil Nadu, India.
  • C. Janaki Department of Mathematics, L.R.G. Government Arts College For Women, Tirupur-641004, Tamil Nadu, India.
  • Pages: 476-487
  • Date Published: 01-07-2016
  • Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)

Ahmad Al-Omari and Takashi Noiri, Local Closure Functions in Ideal Topological Spaces, Novi Sad J. Math., 43(2)(2013), 139-149.

I. Arokia Rani, A.A. Nithya, $* P$-Resolvable Spaces and Precompatible Ideals, International J. of Advanced Scientific and Technical Research, 3(2013), 135-143.

K. Bhavani, g-local functions, Journel of Advanced Studies in Topology, 5(1)(2014), 1-5. DOI: https://doi.org/10.20454/jast.2014.686

K. Bhavani, $psi g$-operator in ideal topological spaces, J. of Advanced Studies in Topology, 5 (1)(2014), 47-49. DOI: https://doi.org/10.20454/jast.2014.716

M. Caldas, S.Jafari,and M.M.Kovar, Some Properties of $theta$-open sets, Divulgaciones Matematicas, 12(2)(2004) $161-169$.

J.Cao, M. Ganster, I. Reilly and M. Steiner, $delta$-closure, $theta$-closure and generalized closed sets, Journal of Mathematical Archive, 3(11)(2012), 3941-3946.

E.Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215. DOI: https://doi.org/10.1007/BF01363287

D. Jankovic and T.R. Hamlett, New topologies from old ideals, Amer. Math. Monthly, 97(4)(1990), 295-310. DOI: https://doi.org/10.1080/00029890.1990.11995593

D. Jankovic and T.R. Hamlett, Ideals in topological spaces and the set operator $psi$, Bull. U.M.I., (7)(4B)(1990),863-874.

Jeong Gi Kang and Chang Su Kim, On P-I-Open Sets, Honam Mathematical J. 31 (2009)(3),293-314. DOI: https://doi.org/10.5831/HMJ.2009.31.3.293

K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.

N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41. DOI: https://doi.org/10.1080/00029890.1963.11990039

A.S. Mashhour, I.A. Hasanein and S.N. El-Deeb, A note on semi-continuity and pre-continuity, Indian J. of Pure Appl. Math., 13 (1982) 10, $1119-1123$.

S. Modak and C. Bandyopadhyay, A note on $psi$-operator, Bull. Malyas. Math. Sci. Soc., (2)(30:1)(2007), 1-12.

T.Natkaniec, On I-continuity and I-semicontinuity points, Math. Slovaca, 36, 3(1986), $297-312$.

O . Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970. DOI: https://doi.org/10.2140/pjm.1965.15.961

O. Njasted, Remarks on topologies defined by local properties, Avh. Norske Vid-Akad. Oslo I (N.S), 8(1966) $1-16$.

V. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam, Properties of topological ideals and Banach category theorem, Kyunkpook Math. J., 45 (2005), 199-209.

Shyamapada Modak, Ideal Delta Space, Int. J. Contemp. Math. Sciences, 6(2011) 45, 2207-2214.

R. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, 1960.

R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51 - 61. DOI: https://doi.org/10.1007/BF03048958

N. V. Velicko, On H-closed topological spaces, Amer. Math. Soc. Transl., 78,(1968) 103-118. DOI: https://doi.org/10.1090/trans2/078/05

  • NA

Metrics

Metrics Loading ...

Published

01-07-2016

How to Cite

M. Anandhi, and C. Janaki. “\(\theta\)-Local Function and \( \psi_\theta\)-Operator”. Malaya Journal of Matematik, vol. 4, no. 03, July 2016, pp. 476-87, doi:10.26637/mjm403/018.