Donoho-Stark uncertainty principle for the generalized Bessel transform
Downloads
DOI:
https://doi.org/10.26637/mjm403/022Abstract
The generalized Bessel transform satisfies some uncertainty principles similar to the Euclidean Fourier transform. A generalization of Donoho-Stark uncertainty principle is obtained for the generalized Bessel transform.
Keywords:
Generalized Bessel transform, Donoho-stark’s uncertainty principleMathematics Subject Classification:
42A38- Pages: 513-518
- Date Published: 01-07-2016
- Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
R.F. Al Subaie and M.A. The continuous wavelet transform for a Bessel type operator on the half line, Mathematics and Statistics 1(4): 196-203, 2013 DOI: https://doi.org/10.13189/ms.2013.010404
D.L. Donoho and P.B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math., 49 (1989), 906-931. DOI: https://doi.org/10.1137/0149053
G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey, Journal of Fourier Anal. Appl. 3 (1997), no. 3, 207-238. MR 1448337 (98f: 42006). DOI: https://doi.org/10.1007/BF02649110
Hogan, J.A. and Lakey, J.D., 2005, Time-Frequency and Time-Scale Methods. Adaptive Decompositions, Uncertainty Principles, and Sampling(Boston-Basel-Berlin: Birkhuser).
S. Thangavelu, An Introduction to the Uncertainty Principle, Progress in Math., 217, Birkhauser Boston, Inc., Boston, MA (2004). MR 2008480 (2004j: 43007). DOI: https://doi.org/10.1007/978-0-8176-8164-7
- NA
Similar Articles
- A. M. A. El-Sayed, F. Gaafar, M. El-Gendy, On the maximal and minimal solutions of a nonlocal problem of a delay stochastic differential equation , Malaya Journal of Matematik: Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.