Donoho-Stark uncertainty principle for the generalized Bessel transform

Downloads

DOI:

https://doi.org/10.26637/mjm403/022

Abstract

The generalized Bessel transform satisfies some uncertainty principles similar to the Euclidean Fourier transform. A generalization of Donoho-Stark uncertainty principle is obtained for the generalized Bessel transform.

Keywords:

Generalized Bessel transform, Donoho-stark’s uncertainty principle

Mathematics Subject Classification:

42A38
  • N. Safouane Department of Mathematics, Faculty of Sciences A¨ ın Chock, University of Hassan II, Casablanca 20100, Morocco.
  • A. Abouleaz Department of Mathematics, Faculty of Sciences A¨ ın Chock, University of Hassan II, Casablanca 20100, Morocco.
  • R. Daher Department of Mathematics, Faculty of Sciences A¨ ın Chock, University of Hassan II, Casablanca 20100, Morocco.
  • Pages: 513-518
  • Date Published: 01-07-2016
  • Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)

R.F. Al Subaie and M.A. The continuous wavelet transform for a Bessel type operator on the half line, Mathematics and Statistics 1(4): 196-203, 2013 DOI: https://doi.org/10.13189/ms.2013.010404

D.L. Donoho and P.B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math., 49 (1989), 906-931. DOI: https://doi.org/10.1137/0149053

G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey, Journal of Fourier Anal. Appl. 3 (1997), no. 3, 207-238. MR 1448337 (98f: 42006). DOI: https://doi.org/10.1007/BF02649110

Hogan, J.A. and Lakey, J.D., 2005, Time-Frequency and Time-Scale Methods. Adaptive Decompositions, Uncertainty Principles, and Sampling(Boston-Basel-Berlin: Birkhuser).

S. Thangavelu, An Introduction to the Uncertainty Principle, Progress in Math., 217, Birkhauser Boston, Inc., Boston, MA (2004). MR 2008480 (2004j: 43007). DOI: https://doi.org/10.1007/978-0-8176-8164-7

  • NA

Metrics

Metrics Loading ...

Published

01-07-2016

How to Cite

N. Safouane, A. Abouleaz, and R. Daher. “Donoho-Stark Uncertainty Principle for the Generalized Bessel Transform”. Malaya Journal of Matematik, vol. 4, no. 03, July 2016, pp. 513-8, doi:10.26637/mjm403/022.