Pseudo asymptotically periodic integral solution of partial neutral functional differential equations
Downloads
DOI:
https://doi.org/10.26637/mjm404/002Abstract
In this paper, we propose a new class of functions called \(\mu\)-pseudo \(\mathcal{S}\)-asymptotically periodic function on \(\mathbb{R}\) by the measure theory. Furthermore, the existence, uniqueness of \(\mu\)-pseudo \(\mathcal{S}\)-asymptotically periodic integral solution to partial neutral functional differential equations with finite delay are investigated. Here we assume that the undelayed part is not necessarily densely defined and satisfies the Hille-Yosida condition.
Keywords:
Partial neutral functional differential equations, Measure theory, Integral solution, \(\mu\)-pseudo \(\mathcal{S}\) -asymptotically periodic functionMathematics Subject Classification:
34K06, 34D05- Pages: 524-533
- Date Published: 01-10-2016
- Vol. 4 No. 04 (2016): Malaya Journal of Matematik (MJM)
M. Adimy and K. Ezzinbi, Existence and linearized stability for partial neutral functional differential equations, Differential Equations and Dynamical Systems, 7 (4) (1999), 371-417.
M. Adimy, K. Ezzinbi and M. Laklach, Spectral decomposition for partial neutral functional differential equations, Canadian Applied Mathematics Quarterly, 9 (9) (2001), 1-34.
M. Adimy, A. Elazzouzi and K. Ezzinbi, Bohr-Neugebauer type theoremfor some partial neutral functional differential equations, Nonlinear Analysis, 66 (5) (2007), 1145-1160. DOI: https://doi.org/10.1016/j.na.2006.01.011
M. Adimy, K. Ezzinbi and C. Marquet, Ergodic and weighted pseudo-almost periodic solutions for partial functional differential equations in fading memory spaces, Journal of Applied Mathematics and Computing, $44(1-2)(2014), 147-165$. DOI: https://doi.org/10.1007/s12190-013-0686-9
M. Alia, K. Ezzinbi and S. Fatajou, Exponential dichotomy and pseudo-almost automorphy for partial neutral functional differential equations, Nonlinear Analysis, 71 (5-6) (2009), 2210-2226. DOI: https://doi.org/10.1016/j.na.2009.01.057
W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, in: Monographs in Mathematics, vol. 96, Birkhäuser Verlag, 2001. DOI: https://doi.org/10.1007/978-3-0348-5075-9
J. Blot, P. Cieutat and G. M. N'Guérékata, $mathcal{S}$-asymptocially $omega$-periodic functins and applications to evolution equations, African Diaspora Journal of Mathematics, 12 (2) (2011), 113-121.
J. Blot, P. Cieutat and K. Ezzinbi, Measure theory and pseudo almost automorphic functions: New developments and applications, Nonlinear Analysis, 75 (4) (2012), 2426-2447. DOI: https://doi.org/10.1016/j.na.2011.10.041
- This research is supported by the National Natural Science Foundation of China (Grant No. 11501507).
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.