Nondifferentiable augmented Lagrangian, \(\varepsilon\)-proximal penalty methods and applications

Downloads

DOI:

https://doi.org/10.26637/mjm404/003

Abstract

The purpose of this work is to prove results concerning the duality theory and to give detailed study on the augmented Lagrangian algorithms and \(\varepsilon\)-proximal penalty method which are considered, today, as the most strong algorithms to solve nonlinear differentiable and nondifferentiable problems of optimization. We give an algorithm of primal-dual type, where we show that sequences \(\left\{\lambda^k\right\}_k\) and \(\left\{x^k\right\}_k\) generated by this algorithm converge globally, with at least the Slater condition, to \(\bar{\lambda}\) and \(\bar{x}\). Numerical simulations are given.

Keywords:

Convex programming, augmented Lagrangian, ε-proximal penalty method, duality, Perturbation, Convergence of algorithms

Mathematics Subject Classification:

90C25, 49M29, 49N15
  • Pages: 534-555
  • Date Published: 01-10-2016
  • Vol. 4 No. 04 (2016): Malaya Journal of Matematik (MJM)

N. Daili, Some augmented Lagrangian methods applied to nondifferentiable optimization problems, J. Inf. Optim. Sci. 33 (2012), no. 4-5, 487-526. MR3060105. DOI: https://doi.org/10.1080/02522667.2012.10700158

N. Daili, Applications de Lagrangien Augmenté à des problèmes de programmation convexe non nécessairement différentiables, Pub. 455/P-261, IRMA.- CNRS, Strasbourg I, France, 1986.

N. Daili and Kh. Saadi, $varepsilon$-Proximal Point Algorithms for Nondifferentiable Convex Optimization and Applications, Adv. Model. Optim. 14 (2012), no. 1, 175-195. MR2910314

A. Gonen and M. Avriel, Duality in Nonlinear Programs using Augmented Lagrangian Function, J. Math. Analys. Appl. 121 (1987), pp. 39-56. DOI: https://doi.org/10.1016/0022-247X(87)90236-8

R.T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, 1970. DOI: https://doi.org/10.1515/9781400873173

R.T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Resea. 1(1976), no. 2, pp. 97-116. DOI: https://doi.org/10.1287/moor.1.2.97

  • NA

Similar Articles

You may also start an advanced similarity search for this article.

Metrics

Metrics Loading ...

Published

01-10-2016

How to Cite

Noureddine Daili, and K. Saadi. “Nondifferentiable Augmented Lagrangian, \(\varepsilon\)-Proximal Penalty Methods and Applications”. Malaya Journal of Matematik, vol. 4, no. 04, Oct. 2016, pp. 534-55, doi:10.26637/mjm404/003.