Nondifferentiable augmented Lagrangian, ε-proximal penalty methods and applications

Downloads

DOI:

https://doi.org/10.26637/mjm404/003

Abstract

The purpose of this work is to prove results concerning the duality theory and to give detailed study on the augmented Lagrangian algorithms and ε-proximal penalty method which are considered, today, as the most strong algorithms to solve nonlinear differentiable and nondifferentiable problems of optimization. We give an algorithm of primal-dual type, where we show that sequences {λk}k and {xk}k generated by this algorithm converge globally, with at least the Slater condition, to ˉλ and ˉx. Numerical simulations are given.

Keywords:

Convex programming, augmented Lagrangian, ε-proximal penalty method, duality, Perturbation, Convergence of algorithms

Mathematics Subject Classification:

90C25, 49M29, 49N15
  • Pages: 534-555
  • Date Published: 01-10-2016
  • Vol. 4 No. 04 (2016): Malaya Journal of Matematik (MJM)

N. Daili, Some augmented Lagrangian methods applied to nondifferentiable optimization problems, J. Inf. Optim. Sci. 33 (2012), no. 4-5, 487-526. MR3060105. DOI: https://doi.org/10.1080/02522667.2012.10700158

N. Daili, Applications de Lagrangien Augmenté à des problèmes de programmation convexe non nécessairement différentiables, Pub. 455/P-261, IRMA.- CNRS, Strasbourg I, France, 1986.

N. Daili and Kh. Saadi, $varepsilon$-Proximal Point Algorithms for Nondifferentiable Convex Optimization and Applications, Adv. Model. Optim. 14 (2012), no. 1, 175-195. MR2910314

A. Gonen and M. Avriel, Duality in Nonlinear Programs using Augmented Lagrangian Function, J. Math. Analys. Appl. 121 (1987), pp. 39-56. DOI: https://doi.org/10.1016/0022-247X(87)90236-8

R.T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, 1970. DOI: https://doi.org/10.1515/9781400873173

R.T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Resea. 1(1976), no. 2, pp. 97-116. DOI: https://doi.org/10.1287/moor.1.2.97

  • NA

Similar Articles

You may also start an advanced similarity search for this article.

Metrics

PDF views
94
Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202616
|

Published

01-10-2016

How to Cite

Noureddine Daili, and K. Saadi. “Nondifferentiable Augmented Lagrangian, ε-Proximal Penalty Methods and Applications”. Malaya Journal of Matematik, vol. 4, no. 04, Oct. 2016, pp. 534-55, doi:10.26637/mjm404/003.