On the Cohen \(p\)-nuclear positive sublinear operators
Downloads
DOI:
https://doi.org/10.26637/mjm404/004Abstract
In the present paper, we will introduce the concept of Cohen \(p\)-nuclear positive sublinear operators. We give an analogue to “Pietsch’s domination theorem” and we study some properties concerning this notion.
Keywords:
Pietsch’s domination theorem, Positive operator, Sublinear operators, Cohen \(p\)-nuclear operators, Strongly \(p\)-summing operatorsMathematics Subject Classification:
46B40, 46B42, 47B60, 47B65- Pages: 556-564
- Date Published: 01-10-2016
- Vol. 4 No. 04 (2016): Malaya Journal of Matematik (MJM)
D. H. Alipantis and O. Burkinshaw, Positive Operators, Academic Press, INC (1985).
D. Achour and A. Belacel, Domination and factorization theorems for positive strongly $p$-summing operators, Positivity 18 (2014) 785-804. DOI: https://doi.org/10.1007/s11117-014-0276-6
D. Achour and L. Mezrag, Factorisation des opérateurs sous-linéaires par $L_{p infty}$ et $L_{q 1}$, Ann. Sci. Math. Quebec 26 (2002), 109-121. ( in French).
D. Achour and L. Mezrag, Little Grothendieck's theorem for sublinear operators, J. Math. Anal. Appli. 296 $(2004), 541-552$. DOI: https://doi.org/10.1016/j.jmaa.2004.04.018
D. Achour, L. Mezrag and K. Saadi, On the Cohen p-nuclear sublinear operators, Journal of inequalities in pure and applied mathematics. Vol. 10 (2009), Issue 2, Article 46, 13pp.
D. Achour, L. Mezrag and A. Tiaiba, On the strongly p-summing sublinear operators, Taiwanese Journal of Mathematics. 11(4) (2007), 959-973. DOI: https://doi.org/10.11650/twjm/1500404795
O. Blacso, A class of operators from a Banach lattice into a Banach space, Collect. Math., 37 (1986), 13-22.
O. Blacso, Positive $p$-summing operators from $L_p$-spaces, Proc. Amer. Math. Soc., 31 (1988), 275-280. DOI: https://doi.org/10.1090/S0002-9939-1987-0884466-2
J. S. Cohen, Absolutely $p$-summing, $p$-nuclear operators and their conjugates, Math. Ann., 201 (1973), $177-200$. DOI: https://doi.org/10.1007/BF01427941
J. L. Krivine, Théorèmes de factorisation dans les espaces réticulés, Séminaire Maurey-Schwartz 1973 1974, exposés 22 et 23, École Polytechnique. Paris.
J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I and II, Springer-Verlag, Berlin (1996). DOI: https://doi.org/10.1007/978-3-662-53294-2
H. Schaefer, Banach lattices and Positive Operators, Springer-Verlag, Berlin Heidelberg New York (1974). DOI: https://doi.org/10.1007/978-3-642-65970-6
- NA
Similar Articles
- Zhinan Xia, Pseudo asymptotically periodic integral solution of partial neutral functional differential equations , Malaya Journal of Matematik: Vol. 4 No. 04 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.