On the Cohen \(p\)-nuclear positive sublinear operators

Downloads

DOI:

https://doi.org/10.26637/mjm404/004

Abstract

In the present paper, we will introduce the concept of Cohen \(p\)-nuclear positive sublinear operators. We give an analogue to “Pietsch’s domination theorem” and we study some properties concerning this notion.

Keywords:

Pietsch’s domination theorem, Positive operator, Sublinear operators, Cohen \(p\)-nuclear operators, Strongly \(p\)-summing operators

Mathematics Subject Classification:

46B40, 46B42, 47B60, 47B65
  • A. Belacel Laboratoire de Mathématiques Pures et Appliquées (LMPA), University of Laghouat, Laghouat, Algeria
  • Pages: 556-564
  • Date Published: 01-10-2016
  • Vol. 4 No. 04 (2016): Malaya Journal of Matematik (MJM)

D. H. Alipantis and O. Burkinshaw, Positive Operators, Academic Press, INC (1985).

D. Achour and A. Belacel, Domination and factorization theorems for positive strongly $p$-summing operators, Positivity 18 (2014) 785-804. DOI: https://doi.org/10.1007/s11117-014-0276-6

D. Achour and L. Mezrag, Factorisation des opérateurs sous-linéaires par $L_{p infty}$ et $L_{q 1}$, Ann. Sci. Math. Quebec 26 (2002), 109-121. ( in French).

D. Achour and L. Mezrag, Little Grothendieck's theorem for sublinear operators, J. Math. Anal. Appli. 296 $(2004), 541-552$. DOI: https://doi.org/10.1016/j.jmaa.2004.04.018

D. Achour, L. Mezrag and K. Saadi, On the Cohen p-nuclear sublinear operators, Journal of inequalities in pure and applied mathematics. Vol. 10 (2009), Issue 2, Article 46, 13pp.

D. Achour, L. Mezrag and A. Tiaiba, On the strongly p-summing sublinear operators, Taiwanese Journal of Mathematics. 11(4) (2007), 959-973. DOI: https://doi.org/10.11650/twjm/1500404795

O. Blacso, A class of operators from a Banach lattice into a Banach space, Collect. Math., 37 (1986), 13-22.

O. Blacso, Positive $p$-summing operators from $L_p$-spaces, Proc. Amer. Math. Soc., 31 (1988), 275-280. DOI: https://doi.org/10.1090/S0002-9939-1987-0884466-2

J. S. Cohen, Absolutely $p$-summing, $p$-nuclear operators and their conjugates, Math. Ann., 201 (1973), $177-200$. DOI: https://doi.org/10.1007/BF01427941

J. L. Krivine, Théorèmes de factorisation dans les espaces réticulés, Séminaire Maurey-Schwartz 1973 1974, exposés 22 et 23, École Polytechnique. Paris.

J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I and II, Springer-Verlag, Berlin (1996). DOI: https://doi.org/10.1007/978-3-662-53294-2

H. Schaefer, Banach lattices and Positive Operators, Springer-Verlag, Berlin Heidelberg New York (1974). DOI: https://doi.org/10.1007/978-3-642-65970-6

  • NA

Metrics

Metrics Loading ...

Published

01-10-2016

How to Cite

A. Belacel. “On the Cohen \(p\)-Nuclear Positive Sublinear Operators”. Malaya Journal of Matematik, vol. 4, no. 04, Oct. 2016, pp. 556-64, doi:10.26637/mjm404/004.