Existence results for non-autonomous neutral integro-differential systems with impulsive and nonlocal conditions
Downloads
DOI:
https://doi.org/10.26637/mjm404/008Abstract
In accordance with semigroup theory, fractional powers of operators, approximation techniques and Banach contraction principle fixed point theorem, this manuscript is primarily involved with the existence results for an impulsive non-autonomous neutral integro-differential systems with nonlocal conditions in Banach space E.
Keywords:
Integro-differential equations, Semigroup theory, Impulsive and nonlocal conditions, Evolution equations, Fixed point theoremMathematics Subject Classification:
34A37, 34K37, 35R11, 34G20- Pages: 606-611
- Date Published: 01-10-2016
- Vol. 4 No. 04 (2016): Malaya Journal of Matematik (MJM)
V. Lakshmikantham, D. D Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, Teaneck, London, 1989. DOI: https://doi.org/10.1142/0906
M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, Contemporary Mathematics and its Applications, Vol.2, Hindawi Publishing Corporation, New York, 2006. DOI: https://doi.org/10.1155/9789775945501
Y.-K. Chang, A. Anguraj and M. Mallika Arjunan, Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Analysis: Hybrid Systems, 2(2008), 209-218. DOI: https://doi.org/10.1016/j.nahs.2007.10.001
B. Liu, Controllability of impulsive neutral functional differential inclusions with infinite delay, Nonlinear Analysis, 60(2005), 1533-1552. DOI: https://doi.org/10.1016/j.na.2004.11.022
N. Abada, M. Benchohra, H. Hammouche, Nonlinear impulsive partial functional differential inclusions with state-dependent delay and multivalued jumps, Nonlinear Analysis: Hybrid Systems, 4(4)(2010), 791803. DOI: https://doi.org/10.1016/j.nahs.2010.05.008
B. Radhakrishnan and K. Balachandran, Controllability of impulsive neutral functional evolution integrodifferential systems with infinite delay, Nonlinear Analysis: Hybrid Systems, 5(4)(2011), 655-670. DOI: https://doi.org/10.1016/j.nahs.2011.05.001
J.Y. Park, K. Balachandran and G. Arthi, Controllability of impulsive neutral integrodifferential systems with infinite delay in Banach spaces, Nonlinear Analysis: Hybrid systems, 3(2009), 184-194. DOI: https://doi.org/10.1016/j.nahs.2008.12.002
E. Hernandez, M. Rabello and H.R. Henriquez, Existence of solutions for impulsive partial neutral functional differential equations, J. Math. Anal. Appl., 331(2)(2007), 1135-1158. DOI: https://doi.org/10.1016/j.jmaa.2006.09.043
L. Byszewski, Theorems about existence and uniqueness of solutions of a semi-linear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162(1991), 494-505. DOI: https://doi.org/10.1016/0022-247X(91)90164-U
L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40(1991), 11-19. DOI: https://doi.org/10.1080/00036819008839989
A.C. Tsoi, Explicit solution to a class of neutral delay-differential equations, Int. J. Control, 22(1975), 787799. DOI: https://doi.org/10.1080/00207177508922123
J.K. Hale and S.M.V. Lunel, Introduction to Functional Differential Equations, New York, Springer, 1993. DOI: https://doi.org/10.1007/978-1-4612-4342-7
M.N. Rabelo, M. Henrique and G. Siracusa, Existence of integro-differential solutions for a class of abstract partial impulsive differential equations, J. Inequal. Appl., 2011, 19(2011). DOI: https://doi.org/10.1186/1029-242X-2011-135
J.-R. Wang and Z. Lin, A class of impulsive non-autonomous differential equations and Ulam-HyersRassias stability, Math. Methods Appl. Sci., 38(5)(2014), 868-880. DOI: https://doi.org/10.1002/mma.3113
H. Leiva, Controllability of semilinear impulsive non-autonomous systems, Int. J. Cont., 88(3)(2015), 585592. DOI: https://doi.org/10.1080/00207179.2014.966759
Z. Fan and G. Li, Existence results for semilinear differential equations with nonlocal and impulsive conditions, J. Funct. Anal., 258(2010), 1709-1727. DOI: https://doi.org/10.1016/j.jfa.2009.10.023
Z. Yan, Existence of solutions for nonlocal impulsive partial functional integro-differential equations via fractional operators, J. Comput. Appl. Math., 235(2011), 2252–2262. DOI: https://doi.org/10.1016/j.cam.2010.10.022
Z. Yan and X. Yan, Existence of solutions for a impulsive nonlocal stochastic functional integro-diiferential inclusions in Hilbert spaces, Z. Angew Math. Phys., 64(2013), 573–590. DOI: https://doi.org/10.1007/s00033-012-0249-1
A. Chadha and D.N. Pandey, Existence of a mild solution for an impulsive nonlocal non-autonomous neutral functional differential equation, Ann. Univ. Ferrara, 62(2016), 1-21. DOI: https://doi.org/10.1007/s11565-016-0242-2
R.N. Wang and P.X. Zhu, Non-autonomous evolution inclusions with nonlocal history conditions: global integral solutions, Nonlinear Anal: TMA, 85(2013), 180-191. DOI: https://doi.org/10.1016/j.na.2013.02.026
X. Fu, Existence of solutions for non-autonomous functional evolution equations with nonlocal conditions, Electron. J. Differ. Equ., 2012(110), 1-15. DOI: https://doi.org/10.1186/1687-1847-2012-79
A. Friedman, Partial Differential Equations, Dover Publication, New York, 1997.
A. Friedman and M. Shinbrot, Volterra integral equations in a Banach space, Trans. Am. Math. Sci., $126(1967), 131-179$. DOI: https://doi.org/10.1090/S0002-9947-1967-0206754-7
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. DOI: https://doi.org/10.1007/978-1-4612-5561-1
- NA
Similar Articles
- S. Selvarasu, P. Kalamani , M. Mallika Arjunan, Approximate controllability of nonlocal impulsive fractional neutral stochastic integro-differential equations with state-dependent delay in Hilbert spaces , Malaya Journal of Matematik: Vol. 4 No. 04 (2016): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.