Exact soliton solutions of the generalized combined and the generalized double combined sinh-cosh-Gordon equations

Downloads

DOI:

https://doi.org/10.26637/mjm404/009

Abstract

In this paper, the extended tanh method is used to construct exact solutions of the generalized combined sinh-cosh-Gordon equations and the generalized double combined sinh-cosh-Gordon equations which arises in mathematical physics and has a wide range of scientific applications that range from chemical reactions to water surface gravity waves. The extended tanh method is an efficient method for obtaining exact solutions of nonlinear partial differential equations. This method can be applied to nonintegrable equations as well as to integrable ones.

Keywords:

soliton, Extended tanh method, Combined sinh-cosh-Gordon equations, Double combined sinh-cosh-Gordon equation

Mathematics Subject Classification:

47F05
  • Pages: 617-623
  • Date Published: 01-10-2016
  • Vol. 4 No. 04 (2016): Malaya Journal of Matematik (MJM)

M. A. Abdou, The extended tanh method and its applications for solving nonlinear physical models. Applied Mathematics and Computation, 190 (2007), 988-996. DOI: https://doi.org/10.1016/j.amc.2007.01.070

W. Malfliet and W. Hereman, The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Physica Scripta, 54 (1996), 563-568. DOI: https://doi.org/10.1088/0031-8949/54/6/003

W. Malfliet and W. Hereman, The tanh method: II. Perturbation technique for conservative systems. Physica Scripta, 54 (1996), 569-575. DOI: https://doi.org/10.1088/0031-8949/54/6/004

A. M. Wazwaz, New solitary wave solutions to modified forms of Degasperis-Procesi and CamassaHolm equations. Applied Mathematics and Computation, 186(1) (2006), 130-141. DOI: https://doi.org/10.1016/j.amc.2006.07.092

A. M. Wazwaz, The extended tanh method for new soliton solutions for many forms of the fifth-order KdV equations. Applied Mathematics and Computation, 184(2) (2007), 1002-1014. DOI: https://doi.org/10.1016/j.amc.2006.07.002

A. M. Wazwaz, The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Applied Mathematics and Computation, 187 (2007), 1131-1142. DOI: https://doi.org/10.1016/j.amc.2006.09.013

K. Krishnakumar, The extended tanh method for certain system of nonlinear ordinary differential equations, Malaya journal of matematik, 2(2) (2014), 133-140. DOI: https://doi.org/10.26637/mjm202/005

N. Taghizadeh, M. Mirzazadeh and S. R. Moosavi Noori, Exact solutions of (2+1)-dimensional nonlinear evolution equations by using the extended tanh method. Australian Journal of Basic and Applied Sciences, 5(6) (2011), 1474-1481.

N. Taghizadeh and S. R. Moosavi Noori, Two Reliable Methods for Solving the Modified Improved Kadomtsev-Petviashvili Equation. Applications and Applied Mathematics: An International Journal, 7(2) (2012), 658-671.

M. L. Wang, X. Z. Li and J. L. Zhang, The $left(frac{G^{prime}}{G}right)$-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Physics Letters A, 372 (2008), 417-423. DOI: https://doi.org/10.1016/j.physleta.2007.07.051

A. Bekir, Application of the $left(frac{G^{prime}}{G}right)$-expansion method for nonlinear evolution equations. Physics Letters $A$, $372(2008), 3400-3406$. DOI: https://doi.org/10.1016/j.physleta.2008.01.057

N. Taghizadeh, S. R. Moosavi Noori and S. B. Moosavi Noori, Application of the extended ( $left.frac{G^{prime}}{G}right)$-expansion method to the Improved Eckhaus Equation. Applications and Applied Mathematics: An International Journal, 9(1) (2014), 371-387.

S. D. Zhu, The extended $left(frac{G^{prime}}{G}right)$-expansion method and traveling wave solutions of nonlinear evolution equations. Mathematical and Computational Applications, 15(5) (2010), 924-929. DOI: https://doi.org/10.3390/mca15050924

M. Wang, Solitary wave solutions for variant Boussinesq equations. Physics Letters A, 199 (1995), 169-172. DOI: https://doi.org/10.1016/0375-9601(95)00092-H

M. Inc and M. Ergut, Periodic wave solutions for the generalized shallow water wave equation by the improved Jacobi elliptic function method. Applied Mathematics E-Notes, 5 (2005), 89-96.

E. H. M. Zahran and M. M. A. Khater, Exact traveling wave solutions for the system of shallow water wave equations and modified Liouville equation using extended Jacobian elliptic function expansion method. American Journal of Computational Mathematics, 4 (2014), 455-463. DOI: https://doi.org/10.4236/ajcm.2014.45038

Y. Z. Li, K. M. Li and C. Lin, Exp-function method for solving the generalized-Zakharov equations. Applied Mathematics and Computation, 205 (2008), 197-201. DOI: https://doi.org/10.1016/j.amc.2008.05.138

Z. S. Feng, The first integral method to study the Burgers-Korteweg-de Vries equation. Journal of Physics A: Mathematical and General, 35(2) (2002), 343-349. DOI: https://doi.org/10.1088/0305-4470/35/2/312

N. Taghizadeh and M. Mirzazadeh, The first integral method to some complex nonlinear partial differential equations. Journal of Computational and Applied Mathematics, 235 (2011), 4871-4877. DOI: https://doi.org/10.1016/j.cam.2011.02.021

M. Eslami, M. Mirzazadeh, B. Fathi Vajargah and Anjan Biswas, Optical solitons for the resonant nonlinear Schrdingers equationwith time-dependent coefficients by the first integral method, Optik - International Journal for Light and Electron Optics, 125(13) (2014), 3107-3116. DOI: https://doi.org/10.1016/j.ijleo.2014.01.013

A. M. Wazwaz, The sine-cosine method for obtaining solutions with compact and noncompact structures. Applied Mathematics and Computation, 159(2) (2004), 559-576. DOI: https://doi.org/10.1016/j.amc.2003.08.136

A. M. Wazwaz, The variable separated ODE and the tanh methods for solving the combined and the double combined sinh-cosh-Gordon equations. Applied Mathematics and Computation, 177 (2006), 745-754. DOI: https://doi.org/10.1016/j.amc.2005.09.101

  • NA

Metrics

Metrics Loading ...

Published

01-10-2016

How to Cite

Nasir Taghizadeh, Seyedeh Roodabeh Moosavi Noori, and Seyedeh Bahareh Moosavi Noori. “Exact Soliton Solutions of the Generalized Combined and the Generalized Double Combined Sinh-Cosh-Gordon Equations”. Malaya Journal of Matematik, vol. 4, no. 04, Oct. 2016, pp. 617-23, doi:10.26637/mjm404/009.