General solution and generalized Ulam - Hyers stability of a additive functional equation originating from N observations of an arithmetic mean in Banach spaces using various substitutions in two different approaches
Downloads
DOI:
https://doi.org/10.26637/mjm501/002Abstract
In this paper, we introduce and investigate the general solution and generalized Ulam- Hyers stability of a additive functional equation
$$
f\left(\frac{\sum_{k=1}^N x_k}{N}\right)=\frac{1}{N} \sum_{k=1}^N f\left(x_k\right)
$$
originating from \(N\) observations of an arithmetic mean in Banach spaces using various substitutions in two different approaches with \(N \geq 2\).
Keywords:
Arithmetic mean, additive functional equation, Generalized Hyers-Ulam stability, fixed pointMathematics Subject Classification:
39B52, 32B72, 32B82- Pages: 4-18
- Date Published: 01-01-2017
- Vol. 5 No. 01 (2017): Malaya Journal of Matematik (MJM)
J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989. DOI: https://doi.org/10.1017/CBO9781139086578
J. Aczel J.K. Chung, and C.T. Ng, Symmetric second differences in product form on groups, Topics in Mathematical Analysis, World Scientific, Singapore, 122 (1989). DOI: https://doi.org/10.1142/9789814434201_0001
J. Aczel Lectures on Functional Equations and Their Applications, Academic Press, New York (1966). MR:348020 (1967).
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. DOI: https://doi.org/10.2969/jmsj/00210064
M. Arunkumar, Solution and stability of Arun-additive functional equations, International Journal Mathematical Sciences and Engineering Applications, Vol. 4, No.3, August 2010.
M. Arunkumar, C. Leela Sabari, Solution and stability of a functional equation originating from a chemical equation, International Journal Mathematical Sciences and Engineering Applications, 5(2) (2011), 1-8..
M. Arunkumar, S. Karthikeyan, Solution and Stability of $n$-dimensional Additive functional equation, International Journal of Applied Mathematics, 25 (2), (2012), 163-174.
M. Arunkumar, G. Vijayanandhraj, S. Karthikeyan, Solution and Stability of a Functional Equation Originating From $n$ Consecutive Terms of an Arithmetic Progression, Universal Journal of Mathematics and Mathematical Sciences, Volume 2, No. 2, (2012), 161-171. DOI: https://doi.org/10.14419/ijams.v2i1.1498
M. Arunkumar, Solution and stability of modified additive and quadratic functional equation in generalized 2-normed spaces, International Journal Mathematical Sciences and Engineering Applications, Vol. 7 No. I (2013), 383-391.
M. Arunkumar, Functional equation originating from sum of First natural numbers is stable in Cone Banach Spaces: Direct and Fixed Point Methods, International Journal of Information Science and Intelligent System (IJISIS ISSN:2307-9142), Vol. 2 No. 4 (2013), 89 - 104.
M. Arunkumar, G. Britto Antony Xavier, Functional equation Originating from sum of higher Powers of Arithmetic Progression using Difference Operator is stable in Banach space: Direct and Fixed point Methods, Malaya Journal of Matematik (MJM), Vol 1. Issue 1, (2014), 49-60. DOI: https://doi.org/10.26637/mjm201/007
D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951) $223-237$. DOI: https://doi.org/10.1090/S0002-9904-1951-09511-7
E. Castillo, A. Iglesias and R. Ruiz-coho, Functional Equations in Applied Sciences, Elsevier, B.V.Amslerdam, 2005.
S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002. DOI: https://doi.org/10.1142/4875
D.O. Lee, Hyers-Ulam stability of an addtiive type functional equation, J. Appl. Math. and Computing, 13 (2003) no.1-2, 471-477.
Z. Gajda and R. Ger, Subadditive multifunctions and Hyers-Ulam stability, in General Inequalites 5 , Internat Schrifenreiche Number. Math.Vol. 80, Birkhauser $backslash$ Basel, 1987. DOI: https://doi.org/10.1007/978-3-0348-7192-1_23
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211
H. Haruki and Th.M. Rassias, New characterizations of some mean values, Journal of Mathematical Analysis and Applications 202, (1996), 333 - 348. DOI: https://doi.org/10.1006/jmaa.1996.0319
D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A.,27 (1941) 222-224. DOI: https://doi.org/10.1073/pnas.27.4.222
D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, 1998. DOI: https://doi.org/10.1007/978-1-4612-1790-9
J.L.W.V. Jensen, Sur les fonctions convexes et les inegalities entre les valeurs myennes, Acta Math., 30, 179193 (1965). DOI: https://doi.org/10.1007/BF02418571
S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009. DOI: https://doi.org/10.1007/978-0-387-89492-8
L. Maligranda, A result of Tosio Aoki about a generalization of Hyers-Ulam stability of additive functions- a question of priority, Aequationes Math., 75 (2008), 289-296. DOI: https://doi.org/10.1007/s00010-007-2892-8
B. Margoils and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 126(74) (1968), 305-309. DOI: https://doi.org/10.1090/S0002-9904-1968-11933-0
M. Moslehian and Th.M. Rassias, Stability of functional equations in non-Archimedian spaces, Applicable Analysis and Discrete Mathematics 1(2), (2007), 1-10 DOI: https://doi.org/10.2298/AADM0702325M
V. Radu, The fixed point alternative and the stability of functional equations, in: Seminar on Fixed Point Theory Cluj-Napoca, vol. IV, 2003, in press.
J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, $46,(1982) 126-130$. DOI: https://doi.org/10.1016/0022-1236(82)90048-9
J.M. Rassias, On approximately of approximately linear mappings by linear mappings, Bull. Sc. Math, 108, (1984) 445-446.
J.M. Rassias and M.J. Rassias, On the Ulam stability of Jensen and Jensen type mappings on the restricted domains, J. Math. Anal. Appl., 281 (2003), 516-524. DOI: https://doi.org/10.1016/S0022-247X(03)00136-7
Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297-300. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1
Th.M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers- Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993. DOI: https://doi.org/10.1090/S0002-9939-1992-1059634-1
Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta. Appl. Math. 62 (2000), 23-130. DOI: https://doi.org/10.1023/A:1006499223572
Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003. DOI: https://doi.org/10.1007/978-94-017-0225-6
K.Ravi, M.Arunkumar, On a n-dimensional additive Functional Equation with fixed point Alternative, Proceedings of International Conference on Mathematical Sciences 2007, 314-330.
K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 3647.
P. K. Sahoo, Pl. Kannappan, Introduction to Functional Equations, Chapman and Hall/CRC Taylor and Francis Group, 2011. DOI: https://doi.org/10.1201/b10722
G. Toader and Th.M. Rassias, New properties of some mean values, Journal of Mathematical Analysis and Applications 232, (1999), 376-383. DOI: https://doi.org/10.1006/jmaa.1999.6278
S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.