Second kind shifted Chebyshev polynomials and power series method for solving multi-order non-linear fractional differential equations

Downloads

DOI:

https://doi.org/10.26637/mjm501/003

Abstract

In this paper, we use shifted Chebyshev approximations with the second kind [25] and fractional power series method (FPSM) ([3], [8]) to solve the multi-order non-linear fractional differential equations. The fractional derivative is described in the Caputo sense. The properties of shifted Chebyshev polynomials with the second kind are utilized to reduce multi-order NFDEs. The system of non-linear of algebraic equations which solved by using Newton iteration method. We compared with FPSM. The results are compared with
the traditional methods [23].

Keywords:

Shifted Chebyshev polynomials with the second kind, Fractional power series method, Caputo derivative, Multi-order nonlinear fractional differential equations

Mathematics Subject Classification:

65N20, 41D15
  • Amr M. S. Mahdy Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt.
  • Ali A. A. El-dahdouh Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt.
  • Pages: 19-28
  • Date Published: 01-01-2017
  • Vol. 5 No. 01 (2017): Malaya Journal of Matematik (MJM)

R. L. Bagley and P. J. Torvik, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51, p.(294-298), 1984. DOI: https://doi.org/10.1115/1.3167615

W. W. Bell, Special Functions for Scientists and Engineers, Great Britain, Butler and Tanner Ltd, Frome and London, 1968.

R. Cui and Y. Hu, Fractional power series method for solving fractional differemtial equation, Journal of Advances in Mathematics, 14(4), pp.(6156-6159), 2016. DOI: https://doi.org/10.24297/jam.v12i4.360

S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, New York, 2008.

K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order, Electron. Trans. Numer. Anal., 5, p.(1-6), 1997.

K. Diethelm and N. J. Ford, Multi-order fractional differential equations and their numerical solution, Appl. Math. Comput., 154, p.(621-640), 2004. DOI: https://doi.org/10.1016/S0096-3003(03)00739-2

E. H. Doha, A. H. Bahrawy and S. S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving multiterm fractional orders differential equations, Applied Mathematics Modeling, 35, p.(5662-5672), 2011. DOI: https://doi.org/10.1016/j.apm.2011.05.011

A. El-Ajou, O. A. Arqub and Z. A. Zhour, New results on fractional power series, theories and applications Entropy, 15(12), p.(5305-5323), 2013. DOI: https://doi.org/10.3390/e15125305

I. Hashim, O. Abdulaziz and S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 14, p.(674-684), 2009. DOI: https://doi.org/10.1016/j.cnsns.2007.09.014

J. H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Computer Methods in Applied Mechanics and Engineering, 167(1-2), p.(57-68), 1998. DOI: https://doi.org/10.1016/S0045-7825(98)00108-X

M. Inc, The approximate and exact solutions of the space-and time-fractional Burger's equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345, p.(476-484), 2008. DOI: https://doi.org/10.1016/j.jmaa.2008.04.007

H. Jafari and V. Daftardar-Gejii, Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition, Appl. Math. and Comput., 180, p.(488-497), 2006. DOI: https://doi.org/10.1016/j.amc.2005.12.031

M. M. Khader, On the numerical solutions for the fractional diffusion equation, Communications in Nonlinear Science and Numerical Simulations, 16, p.(2535-542), 2011. DOI: https://doi.org/10.1016/j.cnsns.2010.09.007

M. M. Khader, N. H. Sweilam and A. M. S. Mahdy, Numerical study for the fractional differential equations generated by optimization problem using Chebyshev collocation method and FDM, Applied Mathematics and Information Science, 7(5), p.(2011-2018), 2012. DOI: https://doi.org/10.12785/amis/070541

M. M. Khader, Numerical solution of nonlinear multi-order fractional differential equations by implementation of the operational matrix of fractional derivative, Studies in Nonlinear Sciences, 2(1), p.(512), 2011.

Ch. Lubich, Discretized Fractional Calculus, SIAM J. Math. Anal., 17, p.(704-719), 1986. DOI: https://doi.org/10.1137/0517050

J. C. Mason AND D. C. Handscomb, Chebyshev polynomials, New York, NY,CRC, Boca Raton: Chapman and Hall, 2003 DOI: https://doi.org/10.1201/9781420036114

M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math. 172(1), p.(65-77), 2004. DOI: https://doi.org/10.1016/j.cam.2004.01.033

I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput., 176, p.(1-6), 2006. DOI: https://doi.org/10.1016/j.amc.2005.09.059

S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, London, 1993.

M. A. Snyder, Chebyshev Methods in Numerical Approximation, Prentice-Hall, Inc. Englewood Cliffs, N. J. 1966.

N. H. Sweilam, M. M. Khader and R. F. Al-Bar, Numerical studies for a multi-order fractional differential equation, Physics Letters A, 371, p.(26-33), 2007. DOI: https://doi.org/10.1016/j.physleta.2007.06.016

N. H. Sweilam, M. M. Khader and R. F. Al-Bar, Homotopy perturbation method for linear and nonlinear system of fractional integro-differential equations, International Journal of Computational Mathematics and Numerical Simulation, 1(1), p.(73-87), 2008.

N. H. Sweilam, A. M. Nagy and A. A. Sayed, Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation, Chaos,Solitons & Fractals, 73, p.(141-147), 2015. DOI: https://doi.org/10.1016/j.chaos.2015.01.010

N. H. Sweilam, A. M. Nagy and A. A. El-Sayed, On the numerical solution of space fractional order diffusion equation via shifted Chebyshev polynomials of the third kind, Journal of King Saud University Science, 28(1), pp.(41-47), 2016. DOI: https://doi.org/10.1016/j.jksus.2015.05.002

  • NA

Metrics

Metrics Loading ...

Published

01-01-2017

How to Cite

Amr M. S. Mahdy, and Ali A. A. El-dahdouh. “Second Kind Shifted Chebyshev Polynomials and Power Series Method for Solving Multi-Order Non-Linear Fractional Differential Equations”. Malaya Journal of Matematik, vol. 5, no. 01, Jan. 2017, pp. 19-28, doi:10.26637/mjm501/003.