Numerical method for variable-order space fractional diffusion equation and applications
Downloads
DOI:
https://doi.org/10.26637/mjm501/005Abstract
The purpose of this paper is to develop the explicit fractional order finite difference scheme for variable-order space fractional diffusion equation (VOSFDE). Furthermore, the stability and convergence of the scheme in a bounded domain are discussed. As an application of the scheme, we solve some test problems and their solutions are represented graphically by Mathematica software.
Keywords:
Space fractional, diffusion equation, finite difference scheme, stability analysis, MathematicaMathematics Subject Classification:
46B40, 46B42, 47B60, 47B65- Pages: 41-49
- Date Published: 01-01-2017
- Vol. 5 No. 01 (2017): Malaya Journal of Matematik (MJM)
V.V.Anh and N.N. Leonenko, Spectral analysis of fractional kinetic equations with random data, Journal of Statistical Rhysics, 104(5/6) (2001) 1349-1387. DOI: https://doi.org/10.1023/A:1010474332598
T. Blaszczyk, M. Ciesielski, M. Klimek and J. Leszczynski, Numerical solution of fractional oscillator equation, Applied Mathematics and Computation, 218 (2011) 2480-2488. DOI: https://doi.org/10.1016/j.amc.2011.07.062
C. Chen, F. Liu, V. Anh and I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. SCI. COMPUT., 32(4) (2010) 1740-1760. DOI: https://doi.org/10.1137/090771715
C.F.M. Coimbra, Mechanics with variable-order differential operators, Ann. Phys. 12(11-12) (2003) 692-703. DOI: https://doi.org/10.1002/andp.200351511-1203
G. Diaz and C.F.M. Coimbra, Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation, Nonlinear Dyn, 56 (2009) 145-157. DOI: https://doi.org/10.1007/s11071-008-9385-8
Leda Galue, S.L. Kalla and B.N. Al-Saqabi, Fractional extensions of the temperature field problems in oil strata, Applied Mathematics and Computation, 186 (2007) 35-44. DOI: https://doi.org/10.1016/j.amc.2006.07.086
M. ILIC, F. LIU, I. TURNER and V. ANH, Numerical approximation of a fractional-in-space diffusion equation, I Frac. Cal. Appl. Anal.,pp.53-57, 85(2006).
D. Ingman, J. Suzdalnitsky and M. Zeifman, Constitutive dynamic-order model for nonlinear contact phenomena, J. Appl. Mech., 67 (2000) 383-390. DOI: https://doi.org/10.1115/1.1304916
R. Lin, F. Liu, V. Anh and I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009) 435-445. DOI: https://doi.org/10.1016/j.amc.2009.02.047
F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burrage, Stability and convergence of difference methods for the space-time fractional advection-diffusion equation, Applied Mathematics and Computation, 191(1) (2007) $12-20$. DOI: https://doi.org/10.1016/j.amc.2006.08.162
Zaid Odibat, Approximations of fractional integrals and Caputo fractional derivatives, Applied Mathematics and Computation, 178 (2006) 527-533. DOI: https://doi.org/10.1016/j.amc.2005.11.072
S.G. Samko, Fractional integration and differentiation of variable order, Analysis Mathematica, 21 (1995) 213236. DOI: https://doi.org/10.1007/BF01911126
P. Zhuang, F. Liu, V. Anh and I. Turner, Numerical methods for the variable order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47 (2009) 1760-1781 DOI: https://doi.org/10.1137/080730597
- NA
Similar Articles
- M. Arunkumar, E. Sathya , S. Ramamoorthi, General solution and generalized Ulam - Hyers stability of a additive functional equation originating from N observations of an arithmetic mean in Banach spaces using various substitutions in two different approaches , Malaya Journal of Matematik: Vol. 5 No. 01 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.