Numerical method for variable-order space fractional diffusion equation and applications

Downloads

DOI:

https://doi.org/10.26637/mjm501/005

Abstract

The purpose of this paper is to develop the explicit fractional order finite difference scheme for variable-order space fractional diffusion equation (VOSFDE). Furthermore, the stability and convergence of the scheme in a bounded domain are discussed. As an application of the scheme, we solve some test problems and their solutions are represented graphically by Mathematica software.

Keywords:

Space fractional, diffusion equation, finite difference scheme, stability analysis, Mathematica

Mathematics Subject Classification:

46B40, 46B42, 47B60, 47B65
  • Pages: 41-49
  • Date Published: 01-01-2017
  • Vol. 5 No. 01 (2017): Malaya Journal of Matematik (MJM)

V.V.Anh and N.N. Leonenko, Spectral analysis of fractional kinetic equations with random data, Journal of Statistical Rhysics, 104(5/6) (2001) 1349-1387. DOI: https://doi.org/10.1023/A:1010474332598

T. Blaszczyk, M. Ciesielski, M. Klimek and J. Leszczynski, Numerical solution of fractional oscillator equation, Applied Mathematics and Computation, 218 (2011) 2480-2488. DOI: https://doi.org/10.1016/j.amc.2011.07.062

C. Chen, F. Liu, V. Anh and I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. SCI. COMPUT., 32(4) (2010) 1740-1760. DOI: https://doi.org/10.1137/090771715

C.F.M. Coimbra, Mechanics with variable-order differential operators, Ann. Phys. 12(11-12) (2003) 692-703. DOI: https://doi.org/10.1002/andp.200351511-1203

G. Diaz and C.F.M. Coimbra, Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation, Nonlinear Dyn, 56 (2009) 145-157. DOI: https://doi.org/10.1007/s11071-008-9385-8

Leda Galue, S.L. Kalla and B.N. Al-Saqabi, Fractional extensions of the temperature field problems in oil strata, Applied Mathematics and Computation, 186 (2007) 35-44. DOI: https://doi.org/10.1016/j.amc.2006.07.086

M. ILIC, F. LIU, I. TURNER and V. ANH, Numerical approximation of a fractional-in-space diffusion equation, I Frac. Cal. Appl. Anal.,pp.53-57, 85(2006).

D. Ingman, J. Suzdalnitsky and M. Zeifman, Constitutive dynamic-order model for nonlinear contact phenomena, J. Appl. Mech., 67 (2000) 383-390. DOI: https://doi.org/10.1115/1.1304916

R. Lin, F. Liu, V. Anh and I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009) 435-445. DOI: https://doi.org/10.1016/j.amc.2009.02.047

F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burrage, Stability and convergence of difference methods for the space-time fractional advection-diffusion equation, Applied Mathematics and Computation, 191(1) (2007) $12-20$. DOI: https://doi.org/10.1016/j.amc.2006.08.162

Zaid Odibat, Approximations of fractional integrals and Caputo fractional derivatives, Applied Mathematics and Computation, 178 (2006) 527-533. DOI: https://doi.org/10.1016/j.amc.2005.11.072

S.G. Samko, Fractional integration and differentiation of variable order, Analysis Mathematica, 21 (1995) 213236. DOI: https://doi.org/10.1007/BF01911126

P. Zhuang, F. Liu, V. Anh and I. Turner, Numerical methods for the variable order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47 (2009) 1760-1781 DOI: https://doi.org/10.1137/080730597

  • NA

Metrics

Metrics Loading ...

Published

01-01-2017

How to Cite

Bhausaheb R. Sontakke, and Abhijeet Shelke. “Numerical Method for Variable-Order Space Fractional Diffusion Equation and Applications”. Malaya Journal of Matematik, vol. 5, no. 01, Jan. 2017, pp. 41-49, doi:10.26637/mjm501/005.