3 Dimensional additive quadratic functional equation
Downloads
DOI:
https://doi.org/10.26637/mjm501/008Abstract
In this paper, the authors established the general solution and generalized Ulam - Hyers stability of an 3 dimensional additive quadratic functional equation
$$
\begin{aligned}
& h(x+2 y+3 z)+h(x+2 y-3 z)+h(x-2 y+3 z)+h(-x+2 y+3 z) \\
&=h(x+y+z)+h(x+y-z)+h(x-y+z)+h(-x+y+z) \\
&+2 h(y)+4 h(z)+5[h(y)+h(-y)]+14[h(z)+h(-z)]
\end{aligned}
$$
via Banach space and non-Archimedean fuzzy Banach Space using direct and fixed point methods.
Keywords:
Additive functional equation, quadratic functional equation, mixed additive-quadratic functional equations, generalized Ulam - Hyers stability, Banach space, non-Archimedean fuzzy Banach space, fixed pointMathematics Subject Classification:
39B52, 32B72, 32B82- Pages: 72-103
- Date Published: 01-01-2017
- Vol. 5 No. 01 (2017): Malaya Journal of Matematik (MJM)
J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989. DOI: https://doi.org/10.1017/CBO9781139086578
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. DOI: https://doi.org/10.2969/jmsj/00210064
L.M. Arriola, W.A. Beyer,Stability of the Cauchy functional equation over p-adic fields, Real Analysis Exchange 31, 125, 2005. DOI: https://doi.org/10.14321/realanalexch.31.1.0125
M. Arunkumar, G. Ganapathy, S. Murthy, S. Karthikeyan, Stability of the Generalized Arun-additive functional equation in Instutionistic fuzzy normed spaces, International Journal Mathematical Sciences and Engineering Applications, Vol.4, No. V, December 2010, 135-146.
M. Arunkumar, John M. Rassias, On the generalized Ulam-Hyers stability of an AQ-mixed type functional equation with counter examples, Far East Journal of Applied Mathematics, Volume 71, No. 2, (2012), 279305.
M. Arunkumar, Solution and stability of modified additive and quadratic functional equation in generalized 2-normed spaces, International Journal Mathematical Sciences and Engineering Applications, Vol. 7 No. I (January, 2013), 383-391.
M. Arunkumar, Generalized Ulam - Hyers stability of derivations of a AQ - functional equation, "Cubo A Mathematical Journal" dedicated to Professor Gaston M. N'Gurkata on the occasion of his 60th Birthday Vol.15, No 1, (March 2013), 159-169. DOI: https://doi.org/10.4067/S0719-06462013000100011
M. Arunkumar, P. Agilan, Additive Quadratic functional equation are Stable in Banach space: A Fixed Point Approach, International Journal of pure and Applied Mathematics, Vol. 86, No.6, (2013), 951 - 963.
M. Arunkumar, P. Agilan, Additive Quadratic Functional Equation are Stable in Banach space: A Direct Method, Far East Journal of Applied Mathematics, Vol. 80, No. 1, (2013), 105 - 121. DOI: https://doi.org/10.26637/mjm101/002
M. Arunkumar, G.Shobana, S. Hemalatha, Ulam - Hyers, Ulam - TRassias, Ulam-GRassias, Ulam - JRassias Stabilities of A Additive - Quadratic Mixed Type Functional Equation In Banach Spaces, International Journal of Pure and Applied Mathematics, Vol. 101, No. 6 (2015), 1027- 1040.
M. Arunkumar, Perturbation of $n$ Dimensional AQ - mixed type Functional Equation via Banach Spaces and Banach Algebra: Hyers Direct and Alternative Fixed Point Methods, International Journal of Advanced Mathematical Sciences (IJAMS), Vol. 2 (1), (2014), 34-56. DOI: https://doi.org/10.14419/ijams.v2i1.1499
I. S. Chang and H. M. Kim, On the Hyers-Ulam stability of a quadratic functional equations, J. Ineq. Appl. Math., 33 (2002), 1-12.
I.S. Chang, E.H. Lee, H.M. Kim, On the Hyers-Ulam-Rassias stability of a quadratic functional equations, Math. Ineq. Appl., 6(1) (2003), 87-95. DOI: https://doi.org/10.7153/mia-06-08
S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002. DOI: https://doi.org/10.1142/4875
M. Eshaghi Gordji, Stability of an Additive-Quadratic Functional Equation of Two Variables in F-Spaces, J. Nonlinear Sci. Appl. 2 (2009), no. 4, 251-259 DOI: https://doi.org/10.22436/jnsa.002.04.07
M. Eshaghi Gordji, N.Ghobadipour, J. M. Rassias, Fuzzy Stability of Additive-Quadratic Functional Equations, arxiv:0903.0842v1 [math.fa]. 2009. DOI: https://doi.org/10.1155/2009/826130
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211
D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A.,27 (1941) 222-224. DOI: https://doi.org/10.1073/pnas.27.4.222
D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables,Birkhauser, Basel, 1998. DOI: https://doi.org/10.1007/978-1-4612-1790-9
K.W. Jun, H.M. Kim, On the Hyers-Ulam-Rassias stability of a generalized quadratic and additive type functional equation, Bull. Korean Math. Soc. 42(1) (2005), 133-148. DOI: https://doi.org/10.4134/BKMS.2005.42.1.133
K. W. Jun and H. M. Kim, On the stability of an n-dimensional quadratic and additive type functional equation, Math. Ineq. Appl 9(1) (2006), 153-165. DOI: https://doi.org/10.7153/mia-09-16
S.M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137. DOI: https://doi.org/10.1006/jmaa.1998.5916
S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
Pl. Kannappan, Quadratic functional equation inner product spaces, Results Math. 27, No.3-4, (1995), 368372. DOI: https://doi.org/10.1007/BF03322841
Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009. DOI: https://doi.org/10.1007/978-0-387-89492-8
A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic, Dordrecht, 1997. DOI: https://doi.org/10.1007/978-94-009-1483-4
B.Margoils, J.B.Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull.Amer. Math. Soc. 12674 (1968), 305-309. DOI: https://doi.org/10.1090/S0002-9904-1968-11933-0
A.K. Mirmostafaee, M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, Vol. 159, no. 6, (2008), 720729. DOI: https://doi.org/10.1016/j.fss.2007.09.016
A.K. Mirmostafaee, M. Mirzavaziri, M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, Vol. 159, no. 6, (2008), 730-738. DOI: https://doi.org/10.1016/j.fss.2007.07.011
A.K. Mirmostafaee, M.S. Moslehian, Stability of additive mappings in non-Archimedean fuzzy normed spaces, Fuzzy Sets Syst. 160, 1643, 2009. DOI: https://doi.org/10.1016/j.fss.2008.10.011
S.A.Mohiuddine, Stability of Jensen functional equation in intuitionistic fuzzy normed space, Chaos, Solitons Fractals 42, 2989, 2009. DOI: https://doi.org/10.1016/j.chaos.2009.04.040
M.S. Moslehian, Th.M. Rassias, Stability of functional equations in non-Archimedean spaces, Applicable Analysis and Discrete Mathematics 1, 325, 2007. DOI: https://doi.org/10.2298/AADM0702325M
A. Najati, M.B. Moghimi, On the stability of a quadratic and additive functional equation, J. Math. Anal. Appl. 337 (2008), 399-415. DOI: https://doi.org/10.1016/j.jmaa.2007.03.104
M. S. E. I. Naschie, A review of applications and results of E-infinity theory, Int. J. Nonlinear Sci. Numer. Simul. 8, 11, 2007. DOI: https://doi.org/10.1515/IJNSNS.2007.8.1.11
M. S. E. I. Naschie, On a fuzzy Khler-like manifold which is consistent with two-slit experiment, Int. J. Nonlinear Sci. Numer. Simul. 6, 95, 2005. DOI: https://doi.org/10.1515/IJNSNS.2005.6.2.95
M. S. E. I. Naschie, The idealized quantum two-slit Gedanken experiment revisited-criticism and reinterpretation, Chaos, Solitons Fractals 27, 9, 2006. DOI: https://doi.org/10.1016/j.chaos.2005.05.010
M. S. E. I. Naschie, On two new fuzzy Kahler manifolds, Klein modular space and Hooft holographic principles, Chaos, Solitons Fractals 29, 876, 2006. DOI: https://doi.org/10.1016/j.chaos.2005.12.027
M. S. E. I. Naschie, Fuzzy dodecahedron topology and E-infinity space-time as a model for quantum physics, Chaos, Solitons Fractals 30, 1025, 2006. DOI: https://doi.org/10.1016/j.chaos.2006.05.088
C. Park, Orthogonal Stability of an Additive-Quadratic Functional Equation, Fixed Point Theory and Applications, doi:10.1186/1687-1812-2011-66 DOI: https://doi.org/10.1186/1687-1812-2011-66
J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, $46,(1982) 126-130$. DOI: https://doi.org/10.1016/0022-1236(82)90048-9
J.M. Rassias, H.M. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasiB-normed spaces J. Math. Anal. Appl. 356 (2009), no. 1, 302-309. DOI: https://doi.org/10.1016/j.jmaa.2009.03.005
Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), $297-300$. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1
Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003. DOI: https://doi.org/10.1007/978-94-017-0225-6
K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 3647.
K. Ravi, J.M. Rassias, M. Arunkumar, R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation, J. Inequal. Pure Appl. Math. 10 (2009), no. 4, Article 114, $29 mathrm{pp}$.
A.M. Robert, A Course in p-adic Analysis, Springer-Verlag, New York, 2000. DOI: https://doi.org/10.1007/978-1-4757-3254-2
R. Saadati, A note on Some results on the IF-normed spaces, Chaos, Solitons Fractals 41, 206, 2009. DOI: https://doi.org/10.1016/j.chaos.2007.11.027
Sun Sook Jin, Yang Hi Lee, A Fixed Point Approach to The Stability of the Cauchy Additive and Quadratic Type Functional Equation, Journal of Applied Mathematics 16 pages, doi:10.1155/2011/817079 DOI: https://doi.org/10.1155/2011/817079
Sun Sook Jin, Yang Hi Lee, Fuzzy Stability of a Quadratic-Additive Functional Equation, International Journal of Mathematics and Mathematical Sciences 6 pages, doi:10.1155/2011/504802 DOI: https://doi.org/10.1155/2011/504802
V.S. Vladimirov, I.V. Volovich, E.I. Zelenov, p-adic Analysis and Mathematical Physics, World Scientific, Singapore, 1994. DOI: https://doi.org/10.1142/1581
S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.
T.Z Xu, J.M. Rassias, W.X. Xu, Stability of a general mixed additive-cubic functional equation in nonArchimedean fuzzy normed spaces, J. Math. Phy. 51, 093508, 2010. DOI: https://doi.org/10.1063/1.3482073
G. Zamani Eskandani, Hamid Vaezi, Y. N. Dehghan, Stability of a Mixed Additive and Quadratic Functional Equation in Non-Archimedean Banach Modules, Taiwanese Journal of Mathematics, vol. 14, no. 4, (2010), 1309-1324. DOI: https://doi.org/10.11650/twjm/1500405948
- NA
Similar Articles
- Amr M. S. Mahdy, Ali A. A. El-dahdouh, Second kind shifted Chebyshev polynomials and power series method for solving multi-order non-linear fractional differential equations , Malaya Journal of Matematik: Vol. 5 No. 01 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.