Generalized Ulam - Hyers stability of on (AQQ): Additive-quadratic-Quartic functional equation

Downloads

DOI:

https://doi.org/10.26637/mjm501/012

Abstract

In this paper, the authors obtain the general solution and generalized Ulam - Hyers stability of an (AQQ): additive - quadratic - quartic functional equation of the form
$$
\begin{aligned}
f(x+y+z) & +f(x+y-z)+f(x-y+z)+f(x-y-z) \\
=2[f(x+y) & +f(x-y)+f(y+z)+f(y-z)+f(x+z)+f(x-z)] \\
& -4 f(x)-4 f(y)-2[f(z)+f(-z)]
\end{aligned}
$$
by using the classical Hyers' direct method. Counter examples for non stability are discussed also.

Keywords:

Additive functional equations, Quadratic functional equations, Quartic functional equations, Mixed type functional equations, Ulam - Hyers stability, Ulam - Hyers - Rassias stability, Ulam - Gavruta - Rassias stability, Ulam - JMRassias stability

Mathematics Subject Classification:

39B52, 32B72, 32B82
  • John M. Rassias Pedagogical Department E.E., Section of Mathematics and Informatics, National and Capodistrian University of Athens, Athens 15342, Greece.
  • M. Arunkumar Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, Tamil Nadu, India.
  • E. Sathya Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, Tamil Nadu, India.
  • N. Mahesh Kumar Department of Mathematics, Arunai Engineering College, Tiruvannamalai - 606 603, Tamil Nadu, India.
  • Pages: 122-142
  • Date Published: 01-01-2017
  • Vol. 5 No. 01 (2017): Malaya Journal of Matematik (MJM)

J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989. DOI: https://doi.org/10.1017/CBO9781139086578

M. Ait SiBaha, B. Bouikhalene and E. Elquorachi , Ulam-Gavruta-Rassias stability of a linear functional equation, Intern. J. Math. Sta. 7(Fe07)(2007), 157-166.

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. DOI: https://doi.org/10.2969/jmsj/00210064

M. Arunkumar, S. Hema latha, C. Devi Shaymala Mary, Functional equation originating from arithmetic Mean of consecutive terms of an arithmetic Progression are stable in Banach space: Direct and fixed point methods, JP Journal of Mathematical Sciences, Vol 3(1), 2012, 27-43.

M. Arunkumar, G. Britto Antony Xavier, Functional equation Originating from sum of higher Powers of Arithmetic Progression using Difference Operator is stable in Banach space: Direct and Fixed point Methods, Malaya Journal of Matematik (MJM), Vol 1. Issue 1, (2014), 49-60. DOI: https://doi.org/10.26637/mjm201/007

M. Arunkumar, Perturbation of $n$ Dimensional AQ - mixed type Functional Equation via Banach Spaces and Banach Algebra: Hyers Direct and Alternative Fixed Point Methods, International Journal of Advanced Mathematical Sciences (IJAMS), Vol. 2 (1), (2014), 34-56. DOI: https://doi.org/10.14419/ijams.v2i1.1499

M. Arunkumar, S. Hemalatha, E. Sathya, 2 - Variable AQCQ - functional equation, International Journal of Advanced Mathematical Sciences, 3 (1) (2015), 65-86 . DOI: https://doi.org/10.14419/ijams.v3i1.4401

M. Arunkumar, S. Hema latha, Additive - Quartic Functional Equations Are Stable in Random Normed Space, Jamal Academic Research Journal an Interdisciplinary, (2015), 31-38.

M. Arunkumar, S. Murthy, S. Hema latha, M. Arulselvan, Additive - quartic functional equations are stable in random normed space: a fixed point method, Malaya Journal of Mathematics, (2015), 215 - 227.

Bouikhalene Belaid and Elquorachi Elhoucien, Ulam-Gavruta-Rassias stability of the Pexider functional equation, Intern. J. Math. Sta. 7(Fe07)(2007), 27-39.

S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002. DOI: https://doi.org/10.1142/4875

P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211

M. Eshaghi Gordji, H. Khodaie, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, arxiv: 0812. 2939v1 Math FA, 15 Dec 2008.

M. Eshaghi Gordji, M. Bavand Savadkouhi and Choonkil Park, Quadratic-Quartic Functional Equations in RN-Spaces, Journal of Inequalities and Applications Volume 2009, Article ID 868423, 14 pages doi:10.1155/2009/868423. DOI: https://doi.org/10.1155/2009/868423

M. Eshaghi Gordji, S. Zolfaghari, J. M. Rassias and M. B. Savadkouhi, Solution and Stability of a Mixed type Cubic and Quartic functional equation in Quasi-Banach spaces, Abstract and Applied Analysis, Volume 2009, Art. ID 417473, 1-14, [Doi:10.1155/2009/417473]. DOI: https://doi.org/10.1155/2009/417473

D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A.,27 (1941) $222-224$. DOI: https://doi.org/10.1073/pnas.27.4.222

D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables,Birkhäuser, Basel, 1998. DOI: https://doi.org/10.1007/978-1-4612-1790-9

K.W. Jun, H.M. Kim, On the Hyers-Ulam-Rassias stability of a generalized quadratic and additive type functional equation, Bull. Korean Math. Soc. 42(1) (2005), 133-148. DOI: https://doi.org/10.4134/BKMS.2005.42.1.133

K. W. Jun and H. M. Kim, On the stability of an n-dimensional quadratic and additive type functional equation, Math. Ineq. Appl 9(1) (2006), 153-165. DOI: https://doi.org/10.7153/mia-09-16

S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001..

P1. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009. DOI: https://doi.org/10.1007/978-0-387-89492-8

A. Najati, M.B. Moghimi, On the stability of a quadratic and additive functional equation, J. Math. Anal. Appl. 337 (2008), 399-415. DOI: https://doi.org/10.1016/j.jmaa.2007.03.104

P. Nakmahachalasint, Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stabilities of additive functional equation in several variables, International Journal of Mathematics and Mathematical Sciences, Volume 2007, Art. ID 13437, 6 pages, [ Doi:10.1155/2007/13437]. DOI: https://doi.org/10.1155/2007/13437

P. Nakmahachalasint, On the generalized Ulam-Gavruta-Rassias stability of mixed-type linear and EulerLagrange-Rassias functional equations, International Journal of Mathematics and Mathematical Sciences, Volume 2007, Art. ID 63239, 10 pages, Doi:10.1155/2007/63239. DOI: https://doi.org/10.1155/2007/63239

Chung-Gil Park and John Michael Rassias, Hyers-Ulam stability of an Euler-Lagrange type additive mapping, Intern. J. Math. Sta. 7(Fe07)(2007), 112-125.

J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, $46,(1982) 126-130$. DOI: https://doi.org/10.1016/0022-1236(82)90048-9

J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Mathematicki, 34(54) (1999), No.2, 243-252.

J. M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glasnik Mathematicki, Ser. III 36(56) (2001), No.1, 63-72.

J.M. Rassias, K.Ravi, M.Arunkumar and B.V.Senthil Kumar, Ulam Stability of Mixed type Cubic and Additive functional equation, Functional Ulam Notions (F.U.N) Nova Science Publishers, 2010, Chapter $13,149-175$.

Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297-300. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1

Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Boston London, 2003. DOI: https://doi.org/10.1007/978-94-017-0225-6

K. Ravi and M. Arunkumar, On the Ulam-Gavruta-Rassias stability of the orthogonally Euler-Lagrange type functional equation, Intern. J. Math. Sta. 7(Fe07)(2007), 143-156.

K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 3647.

K. Ravi, J. M. Rassias, M. Arunkumar and R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation, J. Pure and Appl. Math. JIPAM 10(2009), Issue 4, Article $114,1-29$.

S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.

  • NA

Metrics

Metrics Loading ...

Published

01-01-2017

How to Cite

John M. Rassias, M. Arunkumar, E. Sathya, and N. Mahesh Kumar. “Generalized Ulam - Hyers Stability of on (AQQ): Additive-Quadratic-Quartic Functional Equation”. Malaya Journal of Matematik, vol. 5, no. 01, Jan. 2017, pp. 122-4, doi:10.26637/mjm501/012.